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The Ebola virus (EBOV) epidemic indicated a great need for prophylactic and therapeutic 
strategies. The use of plants for the production of biopharmaceuticals is a concept being 
adopted by the pharmaceutical industry, with an enzyme for human use currently com-
mercialized since 2012 and some plant-based vaccines close to being commercialized. 
Although plant-based antibodies against EBOV are under clinical evaluation, the develop-
ment of plant-based vaccines against EBOV essentially remains an unexplored area. The 
current technologies for the production of plant-based vaccines include stable nuclear 
expression, transient expression mediated by viral vectors, and chloroplast expression. 
Specific perspectives on how these technologies can be applied for developing anti-
EBOV vaccines are provided, including possibilities for the design of immunogens as 
well as the potential of the distinct expression modalities to produce the most relevant 
EBOV antigens in plants considering yields, posttranslational modifications, production 
time, and downstream processing.

Keywords: ebola virus, mucosal immunization, low-cost vaccine, global vaccination, molecular pharming, 
glycoprotein antigen, vP antigen

iNTRODUCTiON

The last Zaire Ebola virus (EBOV) epidemic outbreak in Guinea, which began in December 2013, 
quickly spread and six West-African countries were greatly affected (Guinea, Liberia, Sierra Leone, 
Mali, Nigeria, and Senegal). There have also been reports of cases within health-care workers from 
the USA, Spain, and the United Kingdom. Fortunately, the overall case incidence has dropped, and 
no reports on confirmed cases during the last week of December 2015 were generated. Nonetheless, 
according to a report on December 27, 2015, there have been 25,637 confirmed, probable, or sus-
pected cases of EBOV disease (EVD) in Guinea, Liberia, and Sierra Leone (Figure 1), with over 
11,000 reported deaths, which surpasses all previous EBOV outbreaks combined (World Health 
Organization1). Therefore, the EBOV constitutes an imminent and serious threat to public health, 
as well as a potential bioterrorism agent (1). EBOV represents one of the three genera composed of 
the family Filoviridae (2). The EBOV genus comprises five species: (1) Sudan ebolavirus (SUDV), (2) 
Zaire ebolavirus (ZEBOV), (3) Côte d’Ivoire ebolavirus (also known as Ivory Coast ebolavirus or Tai 
Forest ebolavirus, TAFV), (4) Reston ebolavirus (RESTV), and (5) Bundibugyo ebolavirus. All of these 

1 http://www.who.int/en/.
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FiGURe 1 | Confirmed, probable, and suspected eBOv disease cases worldwide (data up to 27 December 2015; report of December 30 from the 
world Health Organization, http://www.who.int/en/).
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species, with the exception of the RESTV, have shown to cause 
disease in human beings (3, 4). After an incubation period of 
3–21 days, the EVD generally progresses quickly, with symptoms 
of fever, diarrhea, vomiting, systemic inflammatory response 
syndrome, organ dysfunction, and hemorrhagic manifestations 
that end in death (5).

Despite the substantial efforts made to develop rational 
prophylactic and chemotherapeutic interventions, no licensed 
countermeasures are available for the treatment of EVD as of now. 
EBOV is introduced into the human population through close 
contact with bodily fluids of infected animals such as primates 
and fruit bats. EBOV then spreads through human-to-human 
transmission via direct contact (through broken skin or mucous 
membranes) with bodily fluids of infected people. Therefore, 
most efficient measures to control the EVD spread consist of the 
isolation of patients establishing strict barrier nursing procedures 
to protect health-care workers (5). Looking at this situation, the 
development of effective therapeutics for the prevention and treat-
ment of EBOV infections is urgently needed. In the case of immu-
notherapies, achieving broad and long-lasting humoral immunity 
at the mucosa and systemic levels against many EBOV species as 
possible is a key goal (6). The most advanced immunotherapy 
against EVD is ZMapp (Mapp Biopharmaceutical, San Diego, 
CA, USA), a drug consisting of humanized monoclonal antibod-
ies (mAbs) capable of neutralizing the EBOV. This treatment, 
based on passive immunity, has been successful in non-human 
primates (NHPs) and efforts for its licensing and introduction 
into the market are ongoing (7). ZMapp has already been used on 
a compassionate basis to treat a few patients of EVD; however, the 
clinical efficacy of this specific cocktail as a treatment of EVD in 
humans remains uncertain (8). Vaccination is the ideal approach 
to fight this disease since prophylaxis could be achieved through 
the administration of a minimum number of doses. Vaccinology 
offers a myriad of possibilities for the development of vaccines 

against EBOV, and according to the ClinicalTrials.gov database,2 
47 studies of Ebola vaccine trials have been registered. One of the 
biggest challenges in achieving global vaccination is developing 
production platforms accessible to developing countries. For 
instance, protein subunit vaccines are obtained, distributed, and 
administered through processes requiring complex downstream 
steps, cold chain, and delivery systems that involve specialized 
personnel and equipment. All of these aspects hamper vaccina-
tion availability and usage in developing countries. Therefore, the 
next-generation platforms for vaccine production, distribution, 
and delivery have been proposed to develop low-cost and broad 
coverage vaccination strategies. In this context, plant-based 
platforms constitute an attractive technology with the follow-
ing attributes: (i) since the use of sophisticated bioreactors and 
complex downstream processing are avoided, the cost of a plant-
derived product is 10–50 times lower than products derived from 
the fermentation with Escherichia coli (9) and 140 times lower 
when compared to baculovirus-infected insect cells (10); (ii) high 
biosynthetic capacity derived from a machinery that performs 
folding, assembly, and glycosylation; (iii) the plant systems offer 
high safety in the sense that they are not hosts of human or animal 
pathogens, in contrast to mammalian-based production systems 
where the risk of contamination with viruses and prions exists. 
Moreover, many plant tissues and fruits are safe for human con-
sumption and thus can be used as oral delivery vehicles for vac-
cines, thereby avoiding the purification and processing required 
for conventional injectable vaccines. Therefore, plant-made oral 
vaccines can be easily formulated with freeze-dried plant mate-
rial, which not only increases antigen concentration but also 
produces a material stable at room temperature avoiding the cold 
chain maintenance required for other delivery systems (11). This 

2 https://clinicaltrials.gov.
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TABLe 1 | evaluations of plant-made vaccines in clinical trials reported over the last years.

Target disease Antigen expression platform Outcomes Reference

Influenza virus, 2009 pandemic A/
California/04/2009 (H1N1) strain

Hemagglutinin Plant virus-based transient 
expression technology in 
Nicotiana benthamiana plants

Safety and immunogenicity of the plant-produced subunit H1N1 
influenza vaccine was proven. No serious adverse effects were 
observed

Cummings 
et al. (20)

Influenza virus, A/
Indonesia/05/2005 (H5N1) strain

Hemagglutinin Plant virus-based transient 
expression technology in N. 
benthamiana plants

Safety and immunogenicity of the plant-produced subunit H5N1 
influenza vaccine was proven. No serious adverse effects were 
observed

Chichester 
et al. (19)

H1N1 A/California/7/09 (H1) or 
H5N1 A/Indonesia/5/05 (H5)

Hemagglutinin Plant virus-based transient 
expression technology in  
N. benthamiana plants

Besides strong antibody responses, both vaccines elicited 
significantly greater poly-functional CD4(+) T cell responses

Landry et al. 
(22)

H1 vaccine induced poly-functional CD8(+) T cell responses
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perspective constitutes the ideal case for vaccine development, 
and it has been consolidated in recent years with the successful 
delivery of many vaccines and other biopharmaceuticals by the 
oral route in test animals (12–14). The technology of plant-based 
vaccines and the current advances have been recently reviewed by 
distinct groups (15–17). During the last years, clinical trials have 
been conducted to evaluate the immunogenicity and safety of 
influenza virus vaccines with positive outcomes (18–21), which 
has stimulated the interest of the pharmaceutical industry in 
these platforms (Table 1).

In this review, the use of the technology of plant-based 
vaccines to develop attractive EBOV vaccines is placed in per-
spective. After describing the molecular approaches to express 
antigens in the plant cell, the relevant aspects of EBOV as well as 
conventional vaccines under development were are summarized; 
finally, the perspectives on how plant systems may lead to EBOV 
vaccines are identified and discussed.

CURReNT eXPeRiMeNTAL vACCiNeS  
TO FiGHT eBOv

While the precise mechanisms for immune protection against 
the EBOV infection are likely complex, it is noteworthy that 
vaccination against the EBOV surface glycoprotein (GP) is both 
necessary and sufficient for protection against virus infection as 
has been evidenced by several successful vaccination approaches 
(23, 24). This evidence suggests an important role of the GP in 
virus survival within the host. Several studies have pointed out 
that the humoral responses induced by these vaccines are strongly 
associated with protection (25–27), although some reports have 
clearly demonstrated that the cellular response aided in infection 
clearance as well (28).

The most advanced vaccines against EBOV are based on 
the viral GP that has demonstrated protection against EBOV 
in NHPs. It is important to point out that in 2002, the US Food 
and Drug Administration introduced the “animal rule” concept 
that aims to facilitate the licensing of vaccine or drug treatments 
against infection by the EBOV as well as other highly lethal 
human pathogens for which the efficacy evaluation in human 
beings would be unethical and field trials unreasonable (29). 
The application of the “animal rule” allows for the approval of 
any EBOV vaccine candidate based on efficacy testing in animal 
models, with defined immune correlates of protection, as well as 

Phase I and II clinical trials for safety and immunogenicity testing 
in human beings. Therefore, the development of animal models is 
critical for the evaluation and eventual approval of EBOV vaccine 
candidates. Promising animal models for investigating EBOV 
vaccines include Guinea pig (30), mouse (31), Syrian Golden 
hamster (32), marmoset (33), and ferret (34, 35). However, NHP 
models of EBOV infection, especially the model of cynomolgus 
macaques, have a stronger predictive value for human diseases 
and immune protection, and thus, it is the preferred model for 
EBOV vaccine development (24). Therefore, this review will focus 
on the most advanced vaccines that have been tested in NHPs and 
clinical trials. New promising vaccine candidates evaluated using 
other animal models will be mentioned briefly.

Overall, the candidate vaccines against the EBOV developed 
thus far can be divided into three categories: non-replicative 
expressing vector-based vaccines, replication-competent viral 
vector-based vaccines, and viral antigen-based vaccines (36). 
Most of the successful vaccines against the EVD rely on viral vec-
tors in whose genome the EBOV GP gene was introduced (37). 
The vector-based vaccines have been evaluated in NHP and in 
clinical trials, whose outcomes are summarized in the following 
sections. Viruses used as vaccine vectors include vesicular sto-
matitis virus (VSV) (38), recombinant adenovirus replicons (39), 
recombinant parainfluenza virus (40), recombinant rabies virus 
(RABV) (41), and recombinant Venezuelan equine encephalitis 
virus (VEEV) (42). Protein-based vaccines such as virus-like 
particles (VLPs) have also demonstrated EVD protection in 
NHPs, but the characterization of most of the candidates has been 
performed in small animal models (43, 44). A general overview 
on the progress achieved for each type of vaccine is described in 
the following sections.

Non-Replicative vector-Based vaccines
Sullivan et al. (45) reported the first proof of concept on protec-
tion against EBOV infection by vaccination. The study revealed 
that priming with an EBOV GP DNA vaccine followed by boost-
ing with a recombinant adenovirus-5 replicon expressing GP 
conferred complete protection against a lethal EBOV challenge 
in NHPs. Although promising and safe for human beings, the use 
of the most advanced adenovirus 5 replicon-based vaccine faces 
the problem of pre-existing immunity against the viral vector as 
well as a relatively low immunogenicity in human beings, since 
the antibody titers against GP were less than 300, while titers of 
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2,000 are associated with the protection of NHPs (46). An inter-
esting alternative that may solve the problem derived from the 
pre-existing immunity against the vaccination vector consists in 
the use of Chimpanzee adenovirus-based vaccines (47).

Another encouraging example is a VEEV replicon that has 
been employed for EBOV vaccine development. VEEV replicons 
expressing EBOV GP and Sudan ebolavirus (SUDV) GP pro-
tected NHPs against a lethal EBOV as well as SUDV challenge 
when administered a single [1 × 1010 focus-forming units (FFU)] 
simultaneous intramuscular vaccination (42). However, similar 
to adenovirus replicons, the requirement of high vaccine doses 
and a pre-existing immunity to VEEV will likely be the major 
obstacles for human application of this kind of vaccine. A mutant 
form of the EBOV, without the VP30 gene that is required for 
virus replication, was evaluated in mice and guinea pigs, and it 
was shown to confer complete protection against a lethal EBOV 
challenge after two immunizations (48). Moreover, the efficacy of 
this new replication-defective viral vector-based vaccine was also 
confirmed to confer immunoprotection in NHPs when admin-
istered by the intraperitoneal route twice at 3-week intervals 
with 1 × 106 FFU of Ebola ΔVP30 virus. However, this approach 
raised concerns with respect to virulence reversion, and thus, a 
new version of the vaccine consisted of the virus inactivated with 
hydrogen peroxide was generated, which remained antigenic 
and protective in NHPs when administered intramuscularly 
(1 × 107 FFU) one or two times with a 4-week interval (49).

Two replication-incompetent vectored vaccines have reached 
Phase III clinical trials: human adenovirus serotype 26 (Ad26) 
expressing the Ebola virus Mayinga variant GP (Ad26.ZEBOV) 
and Modified Vaccinia Virus Ankara-Bavarian Nordic Filo-vector 
(MVA-BN-Filo). Remarkably, Ad26.ZEBOV and MVA-BN-Filo 
vaccines resulted in sustained elevation of specific immunity, and 
no vaccine-related serious adverse events were observed in Phase 
I clinical trial. In this evaluation, the vaccinated (i.m.) groups 
were (1) with MVA-BN-Filo as prime vaccine on day 1 boosted by 
Ad26.ZEBOV on day 29 or day 57; and (2) with a priming dose of 
Ad26.ZEBOV boosted by MVA-BN-Filo on day 29 or day 57 (50). 
Therefore, Phases II and III were pursued. Moreover, the Phase 
IV, named “Long-term Safety Follow-up of Participants Exposed 
to the Candidate Ebola Vaccines Ad26.ZEBOV and/or MVA-BN-
Filo” is active but not open for participant recruitment yet.

Replication-Competent viral vector-Based 
vaccines
This category includes rhabdovirus-based viral vectors, including 
the VSV and RABV, and paramyxovirus-based vectors such as 
recombinant human parainfluenza virus 3 (HPIV3) expressing 
EBOV GP separately or in combination with nucleoprotein 
(NP). The potential of this kind of vaccine platform was shown 
when the recombinant VSV expressing the GPs of ZEBOV 
(strain Mayinga) was generated using the infectious clone for the 
VSV Indiana serotype. A single intramuscular immunization, 
measured in plaque-forming units (PFU) of the virus particles, 
of cynomolgus macaques (1 × 107 PFU) demonstrated to protect 
NHPs against a lethal challenge (1 × 103 PFU) of ZEBOV (strain 
Kikwit) isolated from a patient from the 1995 EBOV outbreak in 

Kikwit (38). Similarly, Marzi et al. (51) found complete protection 
of NHPs against ZEBOV (strain Makona) following the adminis-
tration of a single dose given as late as 7 days before challenge in 
VSV–EBOV GP vaccinated animals. Looking to explore practi-
cal delivery routes, effective protection of NHPs was observed 
when the vaccine was administered either orally or intranasally  
with the subsequent EBOV challenge (52, 53). These findings 
opened the path to explore mucosal vaccination as a feasible 
strategy in combating the EVD. Furthermore, this vaccine 
platform showed potential as an early treatment since it induced 
beneficial effects in NHPs infected with the EBOV (54) and in 
individuals who have experienced incidental exposure or high-
risk occupational exposure to the EBOV such as a needle stick 
handling (55, 56). Interestingly, a single intramuscular immuni-
zation (1 × 107 PFU in the caudal thigh) of the full-length parent 
RABV vaccine expressing the EBOV GP also conferred complete 
protection in rhesus macaques after a challenge with 1,000 PFU 
of the EBOV (strain Mayinga). However, its potency was lower 
when compared to recombinant VSV-based vaccines (41), such 
as the attenuated vesiculovax recombinant VSV-based vaccines 
expressing the EBOV GP, which protects macaques from a lethal 
challenge after a single dose (57). Another vaccine platform uses 
a paramyxovirus-based vector, such as the recombinant HPIV3 
expressing EBOV GP alone or in combination with NP. These 
vaccines were constructed by inserting a transcription cassette 
encoding the EBOV (Mayinga strain) GP gene between the 
HPIV3 P and M genes alone or in combination with a cassette 
encoding the NP inserted between the HPIV3 HN and L genes. 
Rhesus monkeys were protected against the EBOV infection 
after receiving two doses of 2 × 107 tissue culture infectious dose 
(TCID50) (days 0 and 28) of combined intranasal and intratra-
cheal inoculation and an intraperitoneally challenge on day 67 
(39 days following the second vaccine dose) with 1,000 PFU of the 
EBOV (Zaire species, Mayinga strain) (40). This study reinforces 
the practical feasibility of immunization against the EVD via the 
respiratory tract (58). However, since these vaccine platforms 
are replication competent, their side effects for human vaccina-
tion is a major concern and merits further research. Recently, 
Phase I and II clinical trials have been conducted, and the results 
showed that rVSV-ZEBOV is immunogenic but also mild to 
moderate reactogenic. rVSV-ZEBOV used at 1–5  ×  107  PFU 
(Phase I) provoke fever (25%) and oligoarthritis (22%) in vac-
cinated volunteers (6). A reduced dose of 3 × 105 (Phase II) PFU 
decreases viremia and reactogenicity but also antibody response 
levels without reducing the risk of vaccine-induced side effects 
(59). Remarkably, a Phase III trial in Guinea highlighted that the 
rVSV-ZEBOV is highly efficacious when administered in a single 
2 × 107 PFU dose (estimated vaccine efficacy of 100%) and safe 
in preventing the EVD, while the assessment of vaccine-derived 
adverse events revealed promising outcomes (2 serious adverse 
events in 5,837 vaccinees) (60, 61).

viral Protein/DNA-Based vaccines
Konduru et  al. (62) provided the first proof of concept that a 
subunit vaccine based on purified GP could elicit protective 
immune responses against the EBOV. In their study, a ZEBOV 
GP-Fc fusion protein was constructed coding for the C-terminal 
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end (1–637 aa) of the extracellular domain from the ZEBOV 
GP (Mayinga strain) and the crystallizable fragment (Fc) from 
human IgG1. The ZEBOV GP-Fc protein fusion was produced 
in transfected Chinese hamster ovary cells. C57BL/6 mice 
were intraperitoneally vaccinated (i.p.) with 100 μg of purified 
ZEBOVGP-Fc in complete Freund’s adjuvant and boosts (25 μg 
in incomplete Freund’s adjuvant) were administered at 21, 45, 
and 60 days post-priming. A 90% of protection in the vaccinated 
mice was achieved after a lethal challenge by i.p. injection with 
1,000  PFU of mouse-adapted ZEBOV. Similar results were 
obtained by Phoolcharoen et al. (63) in which the GP was fused 
to a mAb that recognizes an epitope in the GP, resulting in the 
production of EBOV immune complexes (EICs). Remarkably, 
the EICs were produced in Nicotiana benthamiana plants by 
transient expression. The purified EICs were tested in mice, 
administered by the subcutaneous route four times on days 0, 
21, 42, and 63, and the immunogenic properties determined. 
Although antigen–antibody immune complexes were efficiently 
processed and presented to immune effector cells, they found 
that co-delivery of the EIC with toll-like receptor (TLR) agonists 
elicited a more robust antibody response in mice than the EICs 
alone. Among the compounds tested, polyinosinic:polycytidylic 
acid (poly I:C, a TLR-3 agonist) was highly effective as an adju-
vant. After vaccinating mice with EIC plus poly I:C, 80% of the 
animals were protected against a lethal challenge with live EBOV. 
These results are encouraging but further research is needed to 
optimize the immunogenicity of this vaccine and test its efficacy 
in NHP models with the subsequent determination of its safety in 
clinical trials. Another viral antigen-based vaccine strategy is the 
use of VLP that can direct the target antigen to antigen presenting 
cells, such as dendritic cells, stimulating antibody, and cellular 
immune responses. Interestingly, three i.m. immunizations at 
42-day intervals with enveloped EBOV VLPs containing the 
EBOV GP, NP, and VP40 matrix protein, along with RIBI adju-
vant, conferred protection to NHPs against a lethal challenge with 
EBOV, thus providing the first evidence that protective immunity 
can be elicited by non-viral vector-based vaccines in NHPs (43). 
Moreover, the versatility of VLPs should be noted that they can 
either be used as carriers of immune-stimulating molecules or 
enriched with chimeric EBOV GP carrying additional epitopes 
as an approach to enhance immune responses.

It is also important to note that the results on three DNA 
vaccines (INO-4201, -4202, and -4212) and one recombinant 
protein subunit vaccine (EBOV GP1,2 with Matrix-M) have not 
been published yet and probably will bring new perspectives in 
the race of developing new Ebola vaccines (64). DNA vaccines 
expressing the EBOV GP have also been tested in human beings 
during Phase I clinical trials with safe and immunogenic proper-
ties when applied under a scheme comprising three i.m. doses (2, 
4, and 8 mg) on days 0, 28, and 56 (65) and an homologous boost 
(2 mg) at week 32 or after (66).

PeRSPeCTiveS FOR eBOv vACCiNe 
DeveLOPMeNT

Despite the milestone of establishing durable protection against 
the EBOV, future developments are required to increase qualitative 

or quantitative resolution of the protective and non-protective 
humoral immune responses (67). Two encouraging vaccines 
based on GP have been evaluated under Phase I and Phase II 
clinical trials (Table 2) showing durable protection in the cyn-
omolgus macaque model (47, 68, 69). Based on promising data 
from the initial clinical trials, gathered in the late 2014, the WHO 
in combination with the Health Ministry of Guinea, Médecins 
Sans Frontières from Epicentre, and The Norwegian Institute of 
Public Health launched a Phase III trial in Guinea on March 7, 
2015. This trial tested the VSV–EBOV (VSVΔG-ZEBOV-GP) 
vaccine for efficacy and effectiveness in preventing the EVD 
(60). The results indicated that the vaccine is highly efficacious 
and safe, and likely effective in the population when delivered 
during an EVD outbreak via a ring vaccination strategy (60). 
In addition, the plan includes testing another advanced vaccine 
called ChAd3 (ChAd3-ZEBOV-GP; GSK). The follow-up study 
to compare the safety and efficacy of the ChAd3 Ebola Zaire and 
VSVΔG-ZEBOV-GP virus vaccines through Phase II/III clinical 
trials in volunteers from Liberia led to promising results upon 
the first 4 months, and serious adverse effects were not reported  
(24, 64, 70). ChAd3 is an example that the current EBOV vaccines 
require cell-based production and storage at low temperature, 
thereby creating obstacles in scalable manufacturing and shelf-
life in developing countries (67).

Overall, non-replicative vector-based vaccines face the prob-
lem of pre-existing immunity and/or the induction of anti-vector 
immune responses that may decrease their efficacy, while viral 
replication-competent vaccines face important human safety or 
adverse side effects concerns. By contrast, the vaccine strategies 
based on viral protein antigens are not affected by those issues. In 
this context, plant-made vaccines can be a reasonable alternative 
in the fight against the EVD.

HOw COULD eBOv PLANT-BASeD 
vACCiNeS Be DeveLOPeD?

The key steps involved in the development of plant-made vac-
cine prototypes include the following: design putative functional 
immunogens and develop genetically engineered plants express-
ing the antigen or establishing viral vector-based platforms for 
transient expression, estimate yields and antigenic properties of 
the target antigen, assess the immunogenic potential of the candi-
date vaccine in test animals in terms of protective immunity and 
safety, and perform clinical trials once preclinical studies have 
provided acceptable outcomes (Figure 2).

POSSiBiLiTieS FOR THe DeSiGN  
OF iMMUNOGeNS

A successful proof of concept on EBOV plant-based vaccines will 
include the design and production of full-length viral proteins 
such as GP, matrix viral protein (VP40), and NP antigens, as well 
as chimeric proteins carrying conserved protective epitopes capa-
ble of inducing anti-EBOV neutralizing antibodies. Examples 
of the latter approach include the following linear epitopes: 
EQHHRRTDN, VIKLDISEA, and LITNTIAGV (25). Hopefully, 
the current knowledge on the protective EBOV sequences as well 
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TABLe 2 | Current eBOv Food and Drug Administration-approved vaccine trials.a

vaccine platform Trial type Start dateb Location enrollmentc Sponsor

Chimpanzee adenovirus vector 
(ChAd3-ZEBOV-GP)

Phase I a/b dose 
escalating

2014 August USA (Georgia and Maryland) 26 National Institute of Allergy and 
Infectious Diseases, USA

Phase Ia dose 
escalating

2014 September United Kingdom 60 University of Oxford, UK

Phase I/II 2014 October Lausanne, Switzerland 120 University of Lausanne Hospitals, 
Switzerland

Phase Ib dose 
escalating

2014 November Mali, Africa 40 University of Maryland, USA

Vesicular stomatitis virus vector (VSVDG-
ZEBOV-GP) (37, 53)

Phase Ia dose 
escalating

2014 August USA (National Institutes of 
Health, Maryland)

120 NewLink Genetics, USA

Phase Ia dose 
escalating

2014 October USA (Walter Reed Army 
Institute of Research, 
Maryland)

117 NewLink Genetics, USA

Phase I/II 2014 November Geneva, Switzerland 115 University Hospital, Geneva, 
Switzerland

Phase I 2014 November Germany 30 Hamburg-Eppendorf, Germany

Human adenovirus serotype 26 (Ad26) 
expressing the Ebola virus Mayinga variant 
glycoprotein (GP) (Ad26.ZEBOV) and 
Modified Vaccinia Virus Ankara-Bavarian 
Nordic Filo-vector (MVA-BN Filo), in a 
heterologous prime-boost regimen

Phase III 2015 September Kambia, Sierra Leone This study 
is currently 
recruiting 
participants

Crucell Holland BV

aInformation was collected from public records provided by the U.S. National Institutes of Health and is current as of March 2016 (https://clinicaltrials.gov/ct2/home).
b,cMay represent proposed dates and enrollments, respectively.
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as the technologies to produce heterologous proteins in plant cells 
will accelerate the development of plant-made vaccine candidates 
against EBOV.

Regarding epitope vaccines, Wilson et al. (25) reported a GP 
epitope that is conserved among all Ebola viruses demonstrat-
ing that a specific mAb was able to protect mice from a lethal 
EBOV infection. Subsequently, it was found that although some 
EBOV GP epitopes induce an antibody-dependent enhancement 
of EBOV infection, antibodies against other specific EBOV GP 
epitopes were required to control an EBOV infection (73). Another 
recent study demonstrated that a linkage region (aa 393–556) of 
the GP (called MFL) contains a furin cleavage site and an internal 
fusion loop responsible for important viral functions (74). This 
region was the major contributor to immunogenicity in terms 
of the induction of humoral immune responses and neutralizing 
antibodies against the EBOV (75). Interestingly, the study by 
Becquart et al. (71), using sera from infected patients, identified 
specific B-cell epitopes in four EBOV proteins [GP, NP, and 
matrix viral protein (VP40 and VP35)]. Among them, the specific 
immunodominant VP40 and GP epitopes were detected by IgG 
antibodies from asymptomatic individuals and symptomatic 
Gabonese EBOV infected survivors, respectively. These findings 
strongly suggest that an effective epitopic subunit vaccine should 
induce humoral IgG responses targeting specific GP and VP40 
epitopes. One interesting approach in the design of an epitope-
based vaccine capable of triggering protective immune responses 
is the use of immunoinformatic tools. In this regard, the potential 
of inducing both humoral and cell-mediated immunity by T and 
B cells against the EBOV epitopes was recently assessed by Khan 
et al. (76). From the complete proteomes of EBOVs, the amino 
acid sequences were retrieved using UniProt Knowledge Base 
and bioinformatic analyses were conducted to study antigenicity, 

solvent-accessible regions, surface accessibility, flexibility, 
MHC class-I-binding epitopes (cellular immune response), and 
B-cell-binding epitopes (antibody immune response) from those 
proteins. The in  silico capability of each protein sequence to 
initiate an immune response allowed for the identification of the 
most promissory L protein comprise of 128 amino acids, which 
is also known as RNA-dependent RNA polymerase. This protein 
reached the highest antigenicity score in VaxiJen analysis among 
all the query proteins. The downstream bioinformatic analysis 
showed that the 9-mer epitope TLASIGTAF was the selected 
potential epitope-based vaccine candidate for inducing cytotoxic 
T  cell immune responses by considering its overall epitope 
conservancy (76.60%), human population coverage (53–81%), 
and the affinity for highest number of MHC-I (HLA) molecules 
(n = 12). Similarly, the L protein was evaluated to identify B cell 
epitopes and the 9-mer epitope PEEQEQSAE (spanning region 
from 42 to 50 amino acids) of the L protein was the most potential 
B cell epitope to induce antibody-mediated immune responses. 
However, it should be considered that L protein is the last one 
expressed during viral replication, and thus, a vaccine targeting 
only this antigen may result in low efficacy. Therefore, vaccine 
design should contemplate a combination of L protein epitopes 
with those of early proteins, such as GP. Thus, the combination of 
experimental data with immunoinformatic prediction approaches 
opens up a new horizon to design effective multiepitopic vaccines 
able to induce protective antibody immune responses against 
the EBOV. In fact, the Immune Epitope Database and Analysis 
Resource3 has reported an integrative immunopredictive and 
experimental analysis for “functional epitopes.” These epitopes 

3 www.iedb.com.

https://clinicaltrials.gov/ct2/home
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
http:// www.iedb.com.


FiGURe 2 | Results from the in silico epitope analysis of the African Zaire ebolavirus (ZeBOv) spike glycoprotein sequence (GenBank: Aie11809). 
Regions in red indicate the epitopes reported by Becquart et al. (71), based on reactivity with sera collected from human survivors as an indication of the induction 
of neutralizing humoral responses. Regions in yellow indicate the epitopes reported by Vaughan et al. (72) as EBOV-related B-cell epitopes found in the Immune 
Epitope Database. Regions in blue indicate conserved regions of ZEBOV for the African continent overlapping with the epitopes reported in both articles. Regions in 
green indicate matches of the conserved regions found in the bioinformatics analysis and the epitopes reported in the aforementioned articles.
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are identified using assays that demonstrate their potential to 
induce positive outcomes when virus neutralization assays or 
challenge experiments are performed. A high percentage of 
the selected epitopes were from the GP (55%) and NP (33%) 
proteins. The functional EBOV-related B cell epitopes were only 
found in these two proteins (72). On the other hand, an in silico 
analysis to identify EBOV conserved sequences among the 
EBOV variants, matching with the abovementioned functional 
analysis, has allowed the identification of a set of promising GP 
Zaire EBOV B-cell epitopes comprising the following sequence: 
NISGQSPARTSSDPE, NTPVYKLDISEATQVGQHHRRAD, 
and TAGNNNTHHQDTGEE SASSGKLGLITNTI AGVAGLI 
TGGRRTR. These sequences are considered promising candi-
dates for multiepitopic vaccine design (Figure 3).

Since vaccines administered through mucosal membranes, 
mainly by oral route, are the most convenient approach for mass 
vaccination, the developments in this direction are a  priority. 
However, epitopes are not good immunogens per  se and thus 
must be coupled to carrier proteins or adjuvant sequences that 
favor uptake and efficient antigen presentation. Antigen uptake 
at the mucosa can be aided by the use of transmucosal carriers, 
such as the B subunits from either the cholera toxin (CTB) or 
the enterotoxigenic E. coli heat-labile toxin (LTB). These proteins 
produce oligomeric structures that bind the GM1 ganglioside 
on the surface of gut epithelial cells, mediating the translocation 
into the submucosal compartment where the antigen can be 
processed by dendritic cells with the subsequent induction of 

adaptive immune responses (77). These properties enable both 
CTB and LTB to be highly immunogenic and serve as effective 
carrier proteins and adjuvants for unrelated coupled antigens (78, 
79). Therefore, the designed chimeric proteins, through genetic 
fusion, are proposed as candidates that could result in immuno-
gens capable of inducing strong anti-EBOV antibody responses 
using oral immunization under the plant-based vaccine concept. 
This idea is also supported by the proven oral immunogenic 
activity of CTB- and LTB-based chimeric antigens produced in 
plants (79, 80). Therefore, specific EBOV epitopes in the form of 
CTB- or LTB-based chimeras could serve as candidates to induce 
immunoprotective humoral responses against the EBOV. Other 
strategies might include the design of chimeras comprising target 
epitopes and cell penetrating peptides, such as those derived 
from the HIV-1 Tat protein or the Drosophila melanogaster 
Antennapedia homeodomain (penetratin), which increase the 
cellular uptake of large molecules (81, 82).

Another attractive possibility in developing plant-based 
EBOV vaccines could be based on VLPs. It is well established that 
plants can synthetize structural viral proteins that self assemble 
into VLPs. These structures are macromolecular complexes that 
typically are highly immunogenic due to their complexity. Two 
types of VLPs can be produced: those based only on structural 
viral proteins and those based on envelope viral proteins associ-
ated to a membrane layer from the plant cell. VLPs derived from 
bluetongue virus, Norwalk virus, influenza virus, Hepatitis B virus 
(HBV) (nucleocapsid antigen), human papilloma virus, and 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FiGURe 3 | Scheme on the path for development of Ebola virus plant-based vaccine candidates. Antigens will be designed to serve as strong mucosal 
immunogens, and coding genes will be assembled into expression vectors elected according to the expression approach to be assessed. Antigen production can 
be achieved transiently through strategies of chimeric virus (first-generation vectors) or deconstructed virus (second-generation vectors, e.g., agroinfiltration with viral 
pro-vectors), or stably through a nuclear transformation approach (transformation mediated by Agrobacterium or physical methods) or chloroplast transformation 
approach (transformation mediated by physical methods). A subsequent characterization of the plant-made antigens will comprise estimating antigen yields and 
antigenic properties. During preclinical trials, it is envisioned that transient approaches will serve as a high productive platform that will render parenteral vaccines 
after a purification process, which are ideal as prime doses, while stable transformed lines from edible crops may serve as low-cost oral vaccines formulated with 
freeze-dried plant biomass.
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rotavirus have been successfully assembled in plants (83). These 
viral proteins have also been engineered to display unrelated 
epitopes and thus serve, as in the case of CTB and LTB, as immu-
nogenic carriers. This strategy has been successfully applied in a 
number of cases (80, 84).

Another alternative for immunogen design consists of recom-
binant immune complexes (RICs). RICs rely on the production of 
self-polymerized chimeras, whose monomeric form is comprised 
of the antigen of interest fused to the heavy chain of a mAb against 
the same antigen of interest. This has been found to be an effective 
strategy to increase antigen accumulation in transgenic plants 
enhancing immunogenicity (85).

eXPReSSiON AND DeLiveRY 
POSSiBiLiTieS

High antigen yields will constitute a key factor in the flowchart 
to define the viability of the vaccination approach. In particular 
when oral vaccine development is pursued, high doses of antigen 
are typically required. If this aspect is addressed, the ambitious 

goal of developing oral vaccines will be greatly favored. Oral vac-
cines constitute the most attractive immunization approach since 
they offer easier and safer administration as well as the possibility 
of inducing mucosal and systemic immune responses. Although 
low expression levels were a limitation in the initial attempts at 
exploring the viability of plant-based vaccines, it is envisioned 
that the current optimized expression platforms will allow the 
production of the targeted antigens at acceptable yields to reach 
the required level in the plant biomass that could reasonably 
constitute an oral dose (86).

Each expression modality possesses particular advantages 
but at the same time imposes some limitations. Therefore, the 
selection of the expression platform should follow a case-by-case 
analysis contemplating the nature of the elected antigen, the 
delivery approach, and the required time response (Table  3). 
For instance, viral vector-based systems offer high yields, 
efficient production of complex glycosylated proteins, and the 
shortest production time among the plant-based platforms. 
However, since these processes are based in Nicotiana species 
and agroinfiltration, parenteral vaccines can only be produced 

http://www.frontiersin.org/Immunology/
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http://www.frontiersin.org/Immunology/archive


TABLe 3 | identified expression options for specific eBOv immunogens using the available plant expression technologies.

                                                                             Available expression platforms

Stable nuclear transformation Transient nuclear vector-mediated expression Chloroplast expression
Advantages: well established for edible crops to 
be used in oral vaccines

Advantages: high yields Advantages: high yields

Limitations: expression is often low and should 
be optimized

Limitations: current methodologies require purification due 
to the use of Agrobacterium and non-edible hosts, thus are 
recommended for parenteral vaccines production

Limitations: protocols 
available for few 
edible crops, long 
time required for 
transformation

Possible 
immunogens

Full-length 
glycoprotein

Highly recommended Highly recommended Not recommended due 
to lack of glycosylation

Reports related to this approach: a patent 
registered by D’aoust et al. (88) claims the 
expression of virus-like particle (VLP) in plants, 
comprised of the influenza transmembrane 
domain, and the cytoplasmic tail; fused to 
ectodomain from a non-influenza virus trimeric 
surface protein, covering EBOV

Reports related to this approach: a patent registered by 
D’aoust et al. (88) claims the expression of VLPs in plants, 
comprised the influenza transmembrane domain, and the 
cytoplasmic tail; fused to ectodomain from a non-influenza 
virus trimeric surface protein, covering EBOV

Full-length 
VP40

Highly recommended Highly recommended To be determined

Multi-epitope 
proteins

Highly recommended Highly recommended Highly recommended

Immune 
complexes

Highly recommended Highly recommended To be determined

Reports related to this approach: Phoolcharoen et al. (89) 
expressed EBOV immune complex in leaves of Nicotiana 
benthamiana using a geminiviral vector
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after an extensive purification process to obtain an antigen free of 
bacterial compounds and toxic plant metabolites (87). Therefore, 
VLP-based EBOV vaccines using the GP or VP40 antigens can 
be ideally produced in viral vector-based platforms as a quick 
response to epidemics, parenterally immunizing the population 
at risk. However, it should be considered that these vaccines will 
not result in low-cost formulations and will require sterile devices 
and trained personnel for administration. In fact, there is one 
approved patent covering the production of EBOV VLPs in plants 
(88). A report by Phoolcharoen et al. (89), where a geminiviral 
vector was used for expression of the EIC in leaves of N. bentha-
miana, illustrates the potential for producing functional EBOV 
antigens at convenient yields.

In the case of transplastomic approaches, the average yields are 
lower than those of the viral expression vector but still considered 
convenient. However, it should be considered that the time for 
generating transplastomic lines is very long and no complex post-
translational modifications, such as glycosylation, occur in this 
organelle (90). Therefore, this platform is ideal for the production 
of epitope-based vaccines where no complex antigens requiring 
glycosylation are targeted. One attractive avenue consists in the 
use of edible plant species for which chloroplast transformation 
has been established. This is the case of lettuce, which was used 
for the production of some vaccines (91–93).

By contrast, stable nuclear expression also offers high biosyn-
thetic capacity and propagation of cells in bioreactors. The time for 
generating transformed lines depends on the species but is gen-
erally shorter than that required for transplastomic approaches. 
Yields are in general modest but can be optimized using several 
approaches such as organelle targeting and formation of protein 

bodies (94). Interestingly, several edible plant species can be 
efficiently transformed. For instance, lettuce can be transformed 
efficiently using Agrobacterium tumefaciens (95). Another inter-
esting species is the carrot (Daucus carota), for which there are 
efficient protocols for Agrobacterium-mediated transformation 
(96, 97). This host, D. carota, is relevant considering that the first 
plant-made biopharmaceutical for human use introduced into 
the market (Taliglucerase), which is a glucocerebrosidase for 
Gaucher’s disease treatment, was expressed in carrot cell cultures. 
This fact implies that the production processes and the regulatory 
framework are already in place for this system (98). In fact, the 
company that developed this process is also working on validating 
the oral delivery of a recombinant product using carrot cells (99).

CONSiDeRATiONS FOR PLANT-BASeD 
eBOv vACCiNeS iN PReCLiNiCAL 
evALUATiONS

The antigenic and immunogenic properties of the target immu-
nogens should be evaluated through molecular and immunologi-
cal analyses. At the same time, these techniques will allow antigen 
quantification. For strategies based on LTB or CTB as carriers, 
proper folding and formation of pentameric structures produced 
in plants can be assessed by evaluating their interaction with the 
GM1 receptor in GM1–ELISA assays. Positive signals for this 
analysis imply that the chimeric protein is assembled into the 
pentameric form, and therefore, a proper uptake can be expected 
at the mucosa.

On the other hand, VLPs are usually detected via electron 
microscopy, which provides evidence of their successful assembly. 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
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VLPs have the ability to stimulate strong immune responses upon 
oral delivery. In fact, it is considered that the compact and highly 
ordered structures of VLPs can provide resistance to digestive 
proteases (100). It is worth mentioning that the antigenic proteins 
for the HBV are one of the most studied models for production of 
plant-derived VLPs (101). It has been widely demonstrated that 
HBV VLP carriers spontaneously assemble in plant cells, result-
ing in VLPs that preserve their structure (102).

In terms of posttranslational modifications, glycosylation is of 
particular relevance in the production of vaccines based on GP. It 
should be considered that distinct glycosylation processes occur 
in plants with respect to mammalian cells: complex type glycans in 
plants possess, unlike GPs in mammals, a β(1,2′)-xylose residue, 
and/or an α(1,3′)-fucose residue linked to the core glycan (103), 
and a second N-acetylglucosamine (GlcNAc) is enzymatically 
added to the mannose core, and lack of β(1,4′)-galactose- and 
sialic acid-containing complex type glycans as well as the bi-
antennary N-glycans production found in mammals. However, 
these differences on glycosylation do not necessarily result in a 
non-functional or low quality product. In fact, in the case of vac-
cines, there is the possibility that differential glycans associated 
with the plant-derived antigen could enhance immunogenicity 
(104). Moreover, recent advances in the plant glycoengineering 
allow human-like glycomodification and optimization of the 
desired glycan structures for enhancing safety and functionality 
of recombinant vaccines (105).

Another important consideration is the use of rodent or large 
animal models mentioned above that will allow assessing the 
immunogenicity and immunoprotective potential of the plant-
made EBOV vaccine candidates.

Two cases can be highlighted as examples of how the above 
mentioned methodologies have resulted in desirable vaccine 
prototypes: (i) a plant-based vaccine candidate against malaria 
has been produced in plants by using a transplastomic expres-
sion approach. Fusion proteins consisting of CTB along with 
the antigens malaria apical membrane antigen-1 (AMA1) 
or merozoite surface protein-1 were produced in lettuce and 
tobacco leaves; these candidates induced humoral responses and 
protective immunity against a cholera toxin challenge. Moreover, 
both oral and injectable vaccination with CTB-AMA-1 resulted 
in the blocking of the parasite from entering the erythrocytes 
(13). It should also be considered that LTB has been successfully 
produced in several crops, including corn and potato (106, 107). 
The potato-made LTB was used to conduct a pioneering Phase I 
clinical trial, showing its capacity to achieve seroconversion with 
no major adverse effects following an oral immunization scheme 
(106). (ii) A vaccine prototype against Mycobacterium tubercu-
losis has been developed following an approach based on RICs. 
The early secreted Ag85B and the latency-associated Acr antigen 
were expressed in tobacco plants as fusion proteins along with 
an anti-Acr antibody. Remarkably, Bacillus Calmette–Guérin 
(BCG)-immunized mice boosted intranasally with TB-RICs 
showed a significant reduction in M. tuberculosis lung infection 
in comparison with the group immunized only with BCG (108).

Based on the current evidence on the efficacy of several 
plant-based vaccines orally administered (16), it is proposed that 

plant-based formulations may result in strong immune responses 
that could provide immunoprotection against EBOV. It should 
also be considered that plant-based vaccines could be applied 
as oral boosters in prime-boost immunization approaches. This 
focus has proven useful in many plant-based vaccine prototypes, 
including those against Yersinia pestis, HBV, and M. tuberculosis 
(11, 108, 109). All of the aspects mentioned in this article are 
critical in defining the feasibility of performing evaluations of the 
plant-based vaccine candidates in clinical trials.

CONCLUDiNG ReMARKS

There is an urgent need to develop efficacious vaccines against 
the EVD. Although preclinical trials are continuously reported 
for EBOV vaccine prototypes, efforts to develop low-cost vaccine 
production platforms should be contemplated. Plant-made vac-
cines offer the potential to address large-scale vaccine production 
at low cost, thereby facilitating the success of global vaccination 
programs, especially in developing and poorer countries where 
coverage is problematic mainly due to vaccine costs. Only one 
plant-made vaccine candidate has been developed against the 
EBOV thus far. Therefore, systematic efforts are required to 
expand this important research field. The path to address this 
objective will include (i) the design of protective antigens based 
on the current knowledge of the EBOV immunogenic determi-
nants and on eficacious immunogenic carriers, preferably those 
that are highly effective in mucosal membranes; (ii) achieving suf-
ficient antigen yields in edible plant biomass to establish models 
for oral immunization using minimally processed plant biomass; 
and (iii) validating the safety as well as the immunogenic and 
immunoprotective potential of plant-made vaccine candidates in 
test animals.

Each expression platform offers particular advantages, and 
the election should be based on the nature of the chosen anti-
gen, the required time response, and desired delivery route. In 
conclusion, the continuing effort toward the development of 
plant-made vaccines prototypes could lead to important data to 
select approaches with the realistic goal of providing efficacious 
and cost-effective strategies to protect against the EVD. Thus, we 
encourage research in this direction to accelerate the fight against 
this deadly disease.
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