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injections to reduce incoming solar radiation, would significantly alter
atmospheric, terrestrial and marine environments, yet potential side-
effects of theirimplementation for ecosystems and biodiversity have
received little attention. A literature review was carried out to identify
details of the potential ecological effects of climate engineering
techniques. A group of biodiversity and environmental change
researchers then employed a modified Delphi expert consultation
technique to evaluate this evidence and prioritize the effects based
on the relative importance of, and scientific understanding about,
their biodiversity and ecosystem consequences. The key issues and
knowledge gaps are used to shape a discussion of the biodiversity
and ecosystem implications of climate engineering, including novel
climatic conditions, alterations to marine systems and substantial
terrestrial habitat change. This review highlights several current
research priorities in which the climate engineering context is crucial
to consider, as well as identifying some novel topics for ecological
investigation.

1. Introduction

Anthropogenic emissions of greenhouse gases including carbon dioxide are considered
the main cause of an observed 0.8 °C increase in average global surface temperature since
pre-industrial times (IPCC 2013). These changes in greenhouse gas concentrations have
implications not only for temperature, but also for precipitation, ice-sheet dynamics, sea
levels, ocean acidification and extreme weather events (IPCC 2013). Such changes are already
starting to have substantive effects on biodiversity and ecosystems, including altered species’
distributions, interspecific relationships and life history events, and are predicted to intensify
into the future (Chen et al. 2011; Bellard et al. 2012; Warren et al. 2013). With continued high
greenhouse gas emissions (Jackson et al. 2016; International Energy Agency 2015), climate
engineering (‘geoengineering’) has been receiving increasing attention for its potential to
be used to counteract climate change and reduce its damaging effects (IPCC 2013).

Climate engineering refers to large-scale interventions in the Earth system intended to
counteract climate change. There are two main types (see Figure 1, Table 1 and Supporting
Information1 in Supporting Information): (a) carbon dioxide removal (CDR) techniques,
designed to reduce atmospheric carbon dioxide concentrations, and (b) solar radiation
management (SRM), designed to reflect solar radiation away from Earth (The Royal Society
2009; Secretariat of the Convention on Biological Diversity 2012; Caldeira et al. 2013). There
are a range of other terms for these processes. If effective the primary impact of climate
engineering would be to reduce the damaging effects of climate change; CDR by reduc-
ing CO, concentrations to abate the process of climate change itself and SRM by direct
lowering of global temperatures. All techniques will also have secondary impacts associ-
ated with their implementation, ranging from local land-use changes to globally reduced
stratospheric ozone levels, for example (Ricke et al. 2010; Secretariat of the Convention on
Biological Diversity 2012; Tilmes et al. 2013). These secondary impacts have wide-reaching
and potentially complex biodiversity implications (Winder 2004). However, the possible
consequences and the research needed to determine them, have received little attention
from the ecological research community and are largely absent from climate engineering
discussions (Russell et al. 2012).
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Figure 1. Schematic of climate engineering techniques considered in this review, covering CDR techniques
and SRM techniques.

The current lack of consideration of climate engineering impacts on biodiversity and
ecosystems is due in part to the number, complexity, novelty, and large spatial and tem-
poral scale of the potential effects. It is difficult or impossible to empirically test the effects
of most of the techniques (Keith 2000; MacMynowski et al. 2011; Keller et al. 2014) and
deciding on the most pressing research topic can be challenging. The issue can seem an
overwhelming challenge for ecological science, causing research to respond slowly, and
to follow rather than inform policy decisions (Sutherland & Woodroof 2009). Climate engi-
neering has already entered policy discussions (Secretariat of the Convention on Biological
Diversity 2012; International Maritime Organization 2013; IPCC 2013) and, to date, although
implementation is regulated, there is no comprehensive international agreement covering
all climate engineering techniques (Rickels et al. 2011). It is therefore critical that research to
understand potential ecological effects of climate engineering begins as soon as possible so
that it can inform the development of ecologically-sensitive techniques and evidence-based
policy decisions.

For this study, a process of literature review and expert consultation was used to review
the potential biodiversity and ecosystem effects of climate engineering. We focus on the
potential side-effects of implementing the techniques rather than the anticipated climate
change amelioration effect as the former have received relatively little attention and the latter
is a large and complex body of ongoing research beyond the scope of the current project.
We identify key areas where climate engineering presents important questions that should
be considered within existing priority ecological research efforts, as well as identifying a
number of novel knowledge gaps. We suggest a list of research questions which we hope
will encourage timely investigation of the potential ecological effects of climate engineering.

2. Materials and methods

‘Horizon-scanning’ involves the systematic assessment of emerging threats and opportu-
nities, in order to identify key upcoming issues (Sutherland 2006; Sutherland & Woodroof
2009; Martin et al. 2012; Sutherland et al. 2012). In the current study, an adapted process
called‘impact scanning’was used; impacts of climate engineering were identified from the
literature and reviewed to prioritize those which are likely to have the greatest effects on
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biodiversity and ecosystems. The degree of scientific understanding about the effects was
also evaluated, to identify critical knowledge gaps. An expert consultation process combining
elements of the Nominal Group and Delphi techniques (Hutchings & Raine 2006) was used
(Figure 2 gives a summary). Participants gave verbal consent to take part in this exercise. We
did not obtain formal written consent as all data and comments are kept anonymous and it
was agreed from the outset that participants were to be authors of the resulting paper and
approve its contents prior to publication.

2.1. Literature reviews

A literature review was conducted to identify the potential biodiversity and ecosystem effects
of climate engineering techniques. As the scope of the existing literature was uncertain,
the recent reports of the Royal Society (2009) and the Secretariat of the Convention on
Biological Diversity (2012) were used as a starting point. An approach based on snowball
sampling (Biernacki & Waldorf 1981) was used to identify further relevant literature from

Literature review 1: Literature review 2: Efficacy
Biodiversity and ecosystem and technical
effects of climate engineering feasibility of techniques

Survey Round 1:
Importance scores
and comments

Y

Survey Round 2:
Scoring of scientific
understanding

12

Workshop stage 1:
rescoring Round 1
importance scores

Y

Workshop stage 2:
Initial formulation of
research questions for
priority changes

7

Rescoring Round 2
scientific understanding
scores

v v

Formulation of research questions
for environmental changes with:
1) high importance,

2) low understanding and,

3) caused by shortlisted techniques

Figure 2. Flow diagram of study methodology.
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their citations, and then from the citations of these citations, and so on. Seventeen geoen-
gineering techniques were included in the review (Figure 1) based on those discussed in
prominent literature at the time (The Royal Society 2009; Rickels et al. 2011). Overall, the
review found 154 environmental changes predicted to result from the techniques, each with
arange of associated potential biodiversity and ecosystem effects (Supporting Information
S1). Additional environmental changes were added by the participating group of research-
ers so that a total of 192 changes and their associated effects were assessed in total. The
focus was on the side-effects of the implementation of the techniques, rather than the
effects they would cause by counteracting climate change, which is beyond the scope of
the current study. In a separate literature review, assessments of the technical feasibility
and anticipated effectiveness of the techniques were identified using the same literature
sampling technique as above, and used to shortlist five techniques about which research
questions were formulated.

2.2. Scoring round 1: survey

The assessment was conducted by a working group of 34 senior academic scientists with
expertise in biodiversity, ecosystems and environmental and climatic change. Participants
were identified through internet searches and selected to ensure an even split between
terrestrial and marine expertise, and a global scope; the majority of experts were based
at European institutions but there were also representatives from Canada, North America,
Mexico and South Africa, and all had extensive knowledge of ecosystems beyond their
institution’s country.

Each participant first completed an Excel-based survey exercise. They read the report
of the literature review of biodiversity and ecosystem effects of climate engineering
(Supporting Information S1), and used the information to score a list of environmental
changes for each of the techniques between 0 and 100, to reflect the relative impor-
tance of their potential effects on biodiversity and ecosystems. They added comments
to explain their scores. Each climate engineering technique was considered separately.
At the end of the survey, the participants compared their top prioritised environmental
changes from each technique and scored them between 0 and 100. These values were
used as ‘swing weights’ to calibrate the earlier scores, making them comparable across
the techniques (Holt 1996). In a second Excel-based survey, participants used the litera-
ture review report in combination with their own experience and expertise to score the
environmental changes between 0 and 100 to reflect the extent of scientific knowledge
about their biodiversity and ecosystem effects. They also suggested priority research
guestions. Detailed guidelines and definitions were provided for both survey exercises
to ensure that scores were comparable amongst participants. They were asked to assume
deployment of the technique at a‘climatically-significant scale’ (Lenton & Vaughan 2009;
Williamson et al. 2012) and against a background of climate change causing a warming
world with an acidifying ocean. SRM-induced climate changes were considered inde-
pendently of the concurrent greenhouse gas-induced climate changes. Nevertheless,
the biodiversity and ecosystem consequences identified are equally applicable when
the two drivers are considered together.
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2.3. Re-scoring

A summary of the survey responses was sent to each expert for them to review ahead of a
two day workshop in May 2013. At the workshop, participants shared reasons for their scores,
and heard perspectives from others in the group. Parallel groups discussed a subset of the
climate engineering techniques and their associated environmental changes and biodiversity
and ecosystem effects. Following discussion, the experts then individually re-scored using
the same 0-100 scale or kept their original score based on the discussion.

In a final session, the research questions suggested during the second pre-workshop
survey were reviewed and refined.

2.4. Calculating an ‘index of priority’

A median was calculated from the group’s final importance and scientific understanding
scores (both using range of 0-100). This was used to calculate an ‘index of priority’ for each
of the environmental changes across all of the climate engineering techniques, using the
equation: (Importance score + (100 - Understanding score)) x 0.5.

The index of priority was used to rank the environmental changes; a change is of greater
priority if it has more important potential effects on biodiversity and ecosystems and/or
there is less understanding about its effects. A list of the top 20 changes across all of the
techniques was identified from the results of this scoring.

2.5. Shortlisted techniques and research questions

As well as assessing the effects across all 17 climate engineering techniques, we specifically
assessed effects associated with techniques that we concluded were more plausible for
implementation than others; five of the 17 climate engineering techniques were identi-
fied from a review of existing assessments as having relatively higher anticipated efficacy
(potential climate change forcing when deployed at maximum scale) and technical feasi-
bility (availability of materials, technology and knowledge to implement) than the other
techniques (Table 1) (e.g. (Lenton & Vaughan 2009; The Royal Society 2009; Caldeira et al.
2013). This was taken to indicate that they are more plausible options for implementation,
meaning that potential effects associated with them are the most pertinent to consider.

The index of priority was used to identify two or three highest priority environmental
changes associated with each of these five techniques. The expert group identified key
knowledge gaps and research questions about the potential biodiversity and ecosystem
effects, using the questions suggested during the survey as a starting point.

3. Results and discussion
3.1. Key themes for research - across all techniques

The ‘index of priority’ was used to first rank all of the environmental changes across all of
the 17 climate engineering techniques, assuming equal likelihood of implementation. A
full list of the median scores and index of priority values is given in Supporting Information
S4. The top 20 of these environmental changes (Table 2), and patterns within the rest of
the ranked list, reveals interesting themes in the types of changes that were judged by
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the expert group to have important biodiversity and ecosystem consequences but limited
scientific understanding.

3.1.1. Climatic changes

The top seven of the 20 prioritized environmental changes (Table 2) recognize the potentially
substantial and complex biodiversity and ecosystem implications of global-scale alterations
to climatic processes associated with SRM ‘dimming’ techniques — sunshades, sulfate aer-
osols and enhanced marine cloud albedo. These techniques reduce incoming shortwave
radiation to the earth, reducing global mean surface temperature, but causing regionally
variable changes in climatic conditions (Caldeira et al. 2013), such as potential enhancement
of increases or decreases in precipitation caused by climate change (Irvine et al. 2010; Ricke
et al. 2010; Kravitz, Robock, et al. 2013). ‘Novel’ regional climatic states could occur (Irvine
et al. 2010). The ecological effects of these are challenging to predict (Williams et al. 2007).

Changes to temperature and precipitation patterns were considered by the group to be
highly important for biodiversity and ecosystems as they are strong determinants of species’
life history, phenology, physiological performance, distribution and interactions (Pértner &
Farrell 2008; Cahill et al. 2013). A reduction in the equator-to-pole temperature gradient, for
example, would shift species’ climatic ranges (Couce et al. 2013), which would lead to altered
ecological community assemblages and a change in the distribution of biomes (Walther et
al. 2002; Burrows et al. 2011). Changes in the amplitude of seasonal temperature variation
could strongly influence the timing of ecological processes such as migration, breeding,
flowering and phytoplankton blooms (Sims et al. 2001; Edwards & Richardson 2004; Menzel
et al. 2006). Both the climatic effects and the biodiversity impacts they cause are likely to be
highly regionally variable, due to factors such as local microclimatic conditions (De Frenne
etal.2013), or circulation patterns in the marine environment, meaning there are large gaps
in knowledge and understanding of the effects and a need for research.

Changes affecting precipitation and surface water availability were also prioritized; region-
ally variable changes to precipitation patterns, the slowing of the global hydrological cycle
(Tilmes et al. 2013), and a potential reduction in continental rainfall associated with enhanced
desert albedo (Irvine et al. 2011), were all included in the top 20 (Table 2). Water availability
influences rates of primary productivity and the composition of plant communities that
underpin terrestrial habitats (Cleland et al. 2013). Determining the trajectory of the ecolog-
ical effects of changing precipitation patterns is subject to uncertainty due to differences in
individual and species responses, which compound uncertainties over the likely direction
and magnitude of the precipitation change (Mustin et al. 2007; Hoffmann & Sgro 2011).
Paleoecological records of responses to past precipitation changes - for example, the‘green-
ing’ of the Sahara - can offer some indication of potential effects (e.g. Willis et al. 2013), as
can ongoing research on effects of precipitation changes associated with climate change,
but specific research needs to be conducted in the context of climate engineering scenarios.

3.1.2. Changes affecting marine ecosystems

Many of the prioritized environmental changes are associated with ocean systems (Table 2).
Already, anthropogenic emissions of CO, are causing ocean acidification due to increased
dissolved inorganic carbon in ocean waters. Such chemical changes have potential impacts
on the acid-base balance, metabolic energy allocation and calcification of marine organisms
(Bopp et al. 2013; Kroeker et al. 2013). SRM techniques would not address atmospheric



114 e C.G. MCCORMACKET AL.

CO,, soin the absence of additional actions to reduce greenhouse gas levels, concentra-
tions will almost certainly increase relative to present day, which could lead to worsening
acidification (Keller et al. 2014). However, there is uncertainty about the net effect; for the
same emission rates, SRM could lessen CO, rise in the atmosphere by causing enhanced
terrestrial CO, uptake and by avoiding positive feedbacks (e.g. carbon release from thawing
tundra, fire etc.; see Matthews et al. 2009). The net effect of SRM on ocean acidification could
therefore be slightly beneficial compared to a non-SRM scenario. However, SRM will also
reduce sea-surface temperatures, which affect CO, dissolution rates, ocean circulation and
other poorly-understood feedback processes, so the overall effect is uncertain (Williamson
& Turley 2012). The relationship between temperature and ocean acidification impacts on
marine calcifiers, and ecosystems dependent on carbonate structures (e.g. coral reefs), is an
area of active research (e.g. Anthony et al. 2011) but has so far received little attention in the
climate engineering context. To date, only one study (Couce et al. 2013) has investigated
these potential implications of SRM, and finds that moderate deployment could reduce deg-
radation of global coral reef habitat compared to no SRM, according to model simulations.

SRM ‘dimming’ techniques will affect global ocean circulation through changes to the
energy exchanges between the ocean and the atmosphere (McCusker et al. 2012). Light
availability (partially determined by incoming solar irradiance), temperature, and nutrient
patterns fundamentally determine marine ecological communities, and are responsible
for diversity both between ocean strata and across latitudes. Changes to circulation will
alter these factors, with the potential for biodiversity consequences throughout the entire
marine system (Drinkwater et al. 2010; Hardman-Mountford et al. 2013). The group’s scores
indicate there is limited scientific understanding of the likely biodiversity and ecosystem
effects, particularly as they will vary regionally (Secretariat of the Convention on Biological
Diversity 2012). The group acknowledged that oceanic islands would be highly vulnerable
to changes in ocean-atmosphere dynamics (e.g. Loope & Giambelluca 1998). These habitats
often support a high concentration of endemic species and their populations are gener-
ally small and geographically isolated, restricting their ability to adapt. Novel impacts of
climate engineering could also affect them, such as possible deposition of sea water used
for enhanced cloud albedo; this could further reduce freshwater availability, which is often
limited on islands (Meehl 1996).

Increased primary productivity in the surface ocean due to artificially enhanced fertili-
zation is judged to be a highly important change across the various CDR fertilization meth-
ods (Table 2). The phytoplankton communities that would be directly impacted underpin a
significant proportion of ocean ecological communities and determine parameters such as
light penetration, nutrient cycling, and the supply of organic material to benthic systems
(Falkowski et al. 1998; Kirk 2011). Ocean fertilization could therefore have profound effects
throughout marine ecosystems, particularly in currently low-productivity areas (Falkowski
et al. 1998). ‘Knock-on’ trophic effects observed in open-ocean fisheries, whereby changes
in one group of species has broad effects throughout the ecosystem (e.g. Bailey et al. 2009),
would very likely occur. Effects are likely to be widely spread by global ocean circulation
(Williamson et al. 2012). Although their effects are sometimes conflated in the climate engi-
neering literature, we suggest that it is critical to distinguish iron fertilization in high nutrient
low chlorophyll ocean regions from nitrogen or phosphorous fertilization in low nutrient low
chlorophyll regions. Field trials of iron fertilization have shown varying impacts on phyto-
plankton communities and the marine ecosystem (Williamson et al. 2012) and a diversity of
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effects can also be anticipated to result from nitrogen or phosphorus fertilization (Lampitt et
al.2008). Increased productivity caused by enhanced upwelling/downwelling was judged to
be less well understood and so was the highest prioritized; modeling suggests that intended
effects of enhanced vertical mixing may be less strong than anticipated, will vary greatly
from place to place, and may even be opposite from that desired (Dutreuil et al. 2009). The
engineered structures required for enhanced upwelling were also judged to have important
biodiversity and ecosystem implications, creating artificial reefs or acting as ‘stepping stones’
for species migration, distribution, and aggregation (Mineur et al. 2012).

3.1.3. Changes affecting the deep ocean

Environmental changes with effects in the deep ocean were repeatedly identified as priorities
for further research by the group (Table 2). There is a general lack of knowledge about these
environments (Costello et al. 2010) but fisheries research indicates that deep sea species are
sensitive to disturbance and slow to recover (e.g. Devine et al. 2006). It is therefore likely that
effects of climate engineering techniques on the deep sea would be long-lasting. Large-scale
coverage of the deep-ocean seabed, associated with the technique biomass storage in the
ocean (Table 1), would be a significant alteration of relatively undisturbed habitats. Reduced
oxygen and enhanced nutrient levels due to decaying organic matter could impact species
richness, physiological processes and community composition (Levin et al. 2001; Lampitt
et al. 2008). There is a need to increase fundamental understanding of these environments
before deployment of any climate engineering technique that might impact them.

3.1.4. Large-scale terrestrial habitat disturbance or destruction

Large-scale disturbance of terrestrial habitats was a topic prioritized by the group, and
could result from a number of climate engineering techniques (Supporting Information S1).
Although the effects of such habitat change are considered to be relatively well understood
(Table 2), the anticipated scale associated with climate engineering on a‘climatically signif-
icant’ scale is considerable and would be additional to current processes. Specifically, the
replacement of (semi-)natural grassland and shrubland, or forest habitats, with reflective
plants to increase surface albedo for SRM was included in the 20 priority changes (Table 2).
This conversion of existing habitat constitutes complete habitat loss for inhabitant species
(Secretariat of the Convention on Biological Diversity 2012). Detrimental effects could be
reduced by limiting planting to degraded land (e.g. Tilman et al. 2009). However, the area
required in order for the technique to impact the global climate would inevitably exceed
this resulting in conversion of natural or semi-natural habitats (see Lenton & Vaughan 2009;
Tilman et al. 2009).

Alteration or loss of desert habitats through coverage with manmade reflective mate-
rials (an SRM technique) is also included within the 20 prioritized changes (Table 2). It is
estimated that to offset the warming from a doubling of atmospheric CO, concentrations,
an area of approximately 12 million square kilometers — roughly 1.2 times the area of the
Saharan desert - would need to be covered (Lenton & Vaughan 2009; Vaughan & Lenton
2011). Although considered to have low biodiversity, desert regions contain many endemic
species that are highly adapted to the local conditions. They are likely to be significantly
affected by along-term increase in shading and change in regional temperatures caused by
man-made structures (Stahlschmidt et al. 2011). Alteration of the habitats may allow other
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species to become established in desert regions, leading to changes in the unique ecological
community composition (Steidl et al. 2013).

3.1.5. Alteration of soil properties

Another essential area for research was the impact of climate engineering on soils. Specifically,
changes in soil properties due to the addition of powdered alkali rocks for enhanced weath-
ering (a CDR technique) was included in the top 20 (Table 2). This would cause a fundamental
alteration of biogeochemical properties of the soil (pH, structure, etc.) with the potential to
reduce soil biodiversity and disrupt the activity of the soil organisms that underpin overly-
ing ecological communities (Jensen et al. 2003). An associated increase in the availability
of nutrients could also feedback to alter the composition and productivity of plant com-
munities (Dawson et al. 2012). The overall combined effects of changes to interdependent
abiotic soil properties — such as temperature, physical structure and biogeochemistry - are
difficult to predict (Davidson et al. 1998) and understanding of soil dynamics and biota, and
their interactions with above-ground systems, requires more research (De Deyn & van der
Putten 2005). Similar concerns were raised in relation to the application of biochar to soil
as a means to increase carbon sequestration (another CDR technique), as the effects of this
technique on soil biodiversity are poorly understood (Lehmann et al. 2011).

3.2. Priority areas for research

Five climate engineering techniques (Table 1) were found in existing assessments to have
higher anticipated technical feasibility and efficacy than other techniques (e.g. The Royal
Society 2009; Vaughan & Lenton 2011). Of the SRM techniques, stratospheric sulfate aerosols
and enhanced marine cloud albedo are relatively well-studied through model simulations
and inter-comparisons, and both anticipated to have high potential effectiveness in coun-
teracting climate change (Kravitz, Caldeira et al. 2013). Of the CDR techniques, bioenergy
with carbon capture and storage (BECCS) uses techniques that are already well developed
(International Energy Agency 2011) and has good carbon sequestration potential (Caldeira
et al. 2013). It is also included in mitigation scenarios in the recent IPCC Fifth Assessment
report (van Vuuren et al. 2011; IPCC 2014). Ocean fertilization with iron is receiving ongo-
ing commercial interest and field trials demonstrate that it is possible, even if its ability to
absorb and store atmospheric carbon dioxide over the long-term appears to be low (Strong
et al. 2009; Williamson et al. 2012). Direct air capture (DAC) was also found to be pertinent
to consider as there is ongoing research and development of potential technology designs
(e.g. Choi et al. 2011).

For each of these techniques, the index of priority was used to identify the highest priority
environmental changes that they could cause if implemented. For each change, the expert
group identified key knowledge gaps and research questions about its biodiversity and
ecosystem effects, detailed in Table 3.

3.2.1. Reinforcing current research priorities

Many of the questions are relevant to existing research priorities in ecological science,
but climate engineering presents an important and unique context for investigation. For
example, ‘What are the rates of warming that species can tolerate by means of adapta-
tion or migration ... ?’(Table 3) is a key area of research in relation to climate change (e.g.
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(Schloss et al. 2012; Quintero & Wiens 2013; Peck et al. 2014). It is also critical to consider
within the context of climate engineering. Atmospheric and stratospheric SRM (‘dimming’)
techniques will cause global-scale reduction in incoming radiation leading to stabilized
or reduced rates of warming. With intensive implementation, abrupt termination of the
techniques would be expected to cause a rapid rise in global mean temperatures - the
‘termination effect’ — unless additional actions had been used in the interim to reduce
atmospheric Co, (Matthews & Caldeira 2007; Jones et al. 2013). Some of the ecological
impacts of the termination effect can be anticipated from ongoing research into the effects
of ongoing climate change which indicates that warming could alter species distributions,
migration patterns, breeding etc. (Cotton 2003; Hurlbert 2012). However, the rate of tem-
perature increase associated with the termination effect at intensive SRM implementation
is likely to be much more rapid. Rates of change could exceed the ability of many species
to adapt or migrate (Bellard et al. 2012; Cahill et al. 2013; Quintero & Wiens 2013) which
could lead to local extinctions and substantial changes in community assemblages (Willis
et al. 2010). Palaeoecological records suggest that global biodiversity showed resilience
to similar rapid temperature changes during the last glacial-interglacial transition (Willis
etal. 2010), but modern pressures including habitat fragmentation and degradation may
now limit the capacity of species to track changes. Overall, there still remain large uncer-
tainties about the exact nature of the ecological impacts of global temperature rises and
scientific understanding of the biodiversity and ecosystem effects of the termination effect
was judged by the group to be low (Table 3). The intensity of the effects could however
be much less if a more moderate approach to SRM implementation was used. For exam-
ple, if techniques were implemented at a scale to induce only a small degree of cooling
(Kosugi 2013) or to curtail the rate of warming in parallel with emissions reduction efforts
(MacMartin et al. 2014)

Similarly, several of the research questions identified in relation to BECCS (Table 3) are
existing priority topics of research in relation to biofuels for energy (Gove et al. 2010; Fletcher
etal.2011;Wiens et al. 2011). Overall, the effects of biomass production were considered to be
well understood compared to other environmental changes assessed (scores in Supporting
Information S4). However, the significant scale of production required for BECCS as a climate
engineering technique represents a significant additional demand for feedstocks, reinforcing
the importance of research effort on the ecological effects of such production.

3.2.2. Novel research areas

Other environmental changes predicted to be caused by climate engineering create rela-
tively novel conditions compared both to conditions observed in the past, and to projected
trajectories of ongoing climate and environmental change. The ecological effects of these
changes are relatively less well understood. For example, reduced incoming solar radiation
caused by atmospheric and stratospheric SRM techniques will lead to reduced rates of global
warming. However, in the absence of measures to address greenhouse gas emissions, atmos-
pheric CO, levels would remain high. This high CO,, low temperature climate differs from
both current conditions and the high temperature, high CO, conditions projected under
future emissions scenarios (Secretariat of the Convention on Biological Diversity 2012) and
represents a relatively novel global climate compared to current, historical or paleo-historical
conditions (Williams et al. 2007; Tilmes et al. 2013). Temperature and CO, control fundamen-
tal ecological processes and the relative influence of the two parameters is highly complex
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(Long et al. 2004). Climate and vegetation models suggest that elevated CO, would be the
dominant influence and could reduce water stress of plants leading to enhanced terrestrial
primary productivity in almost all regions (Long et al. 2004; Wiens et al. 2011; Donohue et
al. 2013), but there is a large degree of uncertainty in these projections (Jones et al. 2013;
Kravitz, Caldeira et al. 2013). Individual species, functional groups and biomes will also vary
in their response to temperature and co, levels (Higgins & Scheiter 2012; De Frenne et al.
2013). The potential to predict these effects is currently limited by factors including the
low-resolution representation of ecological interactions in integrated global scale models
(Mustin et al. 2007; Ostle & Ward 2012). Scientific understanding of the effects was judged
to be low (see Supporting Information S4).

Even when environmental changes have historical natural proxies, there often remain
knowledge gaps about their biodiversity and ecosystem effects. For example, implications
of increased primary productivity in high nutrient low chlorophyll ocean regions with iron
fertilization can be anticipated to some extent from observations of natural fertilization from
deep water upwelling (Blain et al. 2007) or deposition of air borne dust (Martinez-Garcia
et al. 2014). However, the complexity of ocean systems and possible feedbacks mean that
certainty about the ecological effects remains low, reflected in the expert group scientific
understanding score (Table 3). Questions like ‘What ecosystem effects might occur beyond
the fertilization zone ... ?” would require dedicated investigation should this climate engi-
neering technique be implemented.

The suggested research questions (Table 3) demonstrate critical knowledge gaps about
ecological effects of climate engineering, which will need to be addressed if the techniques
are pursued. Many relate to topics already recognized by the ecological research community
as priority knowledge gaps, but in the climate engineering context, may require investigation
over different scales, timeframes and locations. Others relate to novel conditions that could
be created by climate engineering, which raise new questions about potential biodiversity
and ecosystem impacts.

3.3. Concluding remarks

3.3.1. Inclusion of biodiversity and ecosystem effects in climate engineering research
and decision-making
In the discussion about climate engineering to date, potential biodiversity and ecosystem
impacts of the techniques have received little attention and there has been very limited work
by the ecological research community on this topic. We believe it has thus far been challeng-
ing to identify discrete research questions due to the scale, number, range and complexity
of potential biodiversity and ecosystem effects. In addition, there is perhaps reluctance to
engage with climate engineering, given that it involves large-scale manipulation of the earth
system and is viewed by some as a distraction from reducing greenhouse-gas emissions.
In an effort to encourage timely research into the biodiversity and ecosystem impacts
of climate engineering, we have reviewed a comprehensive range of potential effects and
made a critical first attempt to prioritize them based on assessment of the importance of their
biodiversity and ecosystem effects and the degree of scientific understanding about them.
In doing so, we have identified some key knowledge gaps and questions. Some of these fit
within research priorities already identified by ecological science, but climate engineering
presents a novel application and extension of the investigations and reinforces the need to
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investigate these topics further. Others relate to conditions potentially created by climate
engineering that differ from past conditions and from those projected under underlying
climate and environmental change.

Discussions — and decisions — on the governance of climate engineering are already
occurring, e.g. recent amendments to the London Protocol (International Maritime
Organization 2013; Schafer et al. 2013). For sound policy decisions to be made, it is crit-
ical that they are based on good scientific understanding. We hope our identification of
key knowledge gaps and suggested research questions will act as a platform for more
detailed consideration of the ecological implications of climate engineering from now
on, both from the ecological research community, and from those working on climate
engineering and related policy.

3.3.2. Expert consultation and uncertainty

Expert elicitation can help enhance limited information available from scientific study (Martin
et al. 2012). It is useful in the case of climate engineering as empirical studies of the tech-
niques are logistically difficult orimpossible to conduct at the scales necessary (Secretariat of
the Convention on Biological Diversity 2012). Extrapolation from analogous natural processes
(for example, global dimming caused by volcanic eruptions; Robock et al. 2013) and climate
envelope modeling (Couce et al. 2013) can inform expectations of future scenarios to some
extent (Robock et al. 2013), but are less effective when conditions will be novel relative to
the past (Sutherland 2006).

The expert group used their collective knowledge to interpret available information to
identify which biodiversity and ecosystem effects of climate engineering from a long and
diverse list are important to investigate further. They acknowledged complexities of the
potential ecological effects of climate engineering not previously acknowledged in the cli-
mate engineering literature. For example, the importance of distinguishing the effects of
ocean fertilization with iron from those associated with nitrogen or phosphorus, and the
need to particularly consider vulnerability of island biodiversity.

Inevitably, there are sources of uncertainty and variability inherent in expert consultation.
Our outcomes may have been different with a different group of experts due to varying
knowledge and opinion on the ecological impacts being discussed. Outcomes also depend
very much on how the issues are framed, such as the context in which climate engineering
is considered. For example, whilst it was specified that the working group should consider
the effects against a background of a warming world with an acidifying ocean, it was left
up to the individual to interpret whether that should be a‘business as usual’scenario or one
with low, medium or high global mitigation effort. As noted in the introduction, we also
did not consider the effects of the overall climate amelioration that would occur if climate
engineering were effective, which would also have considerable biodiversity and ecosystem
effects, including some likely benefits.

There are also many uncertainties related to climate engineering that make anticipating
biodiversity and ecosystem effects challenging. Most technologies are in the early stages
of design and it is difficult to predict how they might evolve. The location, timing and scale
of any future deployment of such techniques are all theoretical (Keith 2000), making it dif-
ficult to identify the specific circumstances under which the environmental changes would
occur (The Royal Society 2009; Russell et al. 2012). This significant topic of ongoing research
should occur in parallel with attempts to project biodiversity and ecosystem effects of climate
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engineering. Biodiversity experts and climate engineering impact modelers should collabo-
rate in order to produce reasonable scenarios of deployment (Carey & Burgman 2008) (and
see Cusack et al. 2014).

4, Conclusion

Any climate engineering technique designed to alter the global climate will have significant
implications for biodiversity and ecosystems. This study makes a first attempt to identify
effects related to currently-discussed techniques that are priorities for detailed investigation.
The outcomes should be considered for what it is: an assessment by a group of experienced
researchers based on currently available information. It is not an evaluation of the relative
benefits or risks of climate engineering. It is a scoping of knowledge gaps and research pri-
orities related to the biodiversity and ecosystem effects of implementing the techniques. The
major themes identified show the types of ecological impacts that are particularly critical
to consider, and highlight both important overlaps with existing research priorities and
knowledge gaps that require new research focus. If interest in climate engineering continues,
biodiversity and ecosystem consequences must be comprehensively considered so that
unintended consequences are avoided and any potential co-benefits are realized. Further
horizon scanning and expert consultation processes similar to those used here could be
valuable in identifying emerging issues.
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