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ABSTRACT
Natural mortality (M ) is defined as the rate of loss that occurs in a fish stock due to
natural (non-fishing) causes and can be influenced by density-dependent or density-
independent factors. Different methods have been used to estimate M, one of these
is the gnomonic approach. This method estimates M rates by dividing the life cycle
of a species into subunits of time that increase as a constant proportion of the time
elapsed from birth up to the initiation of each subdivision. In this study, an improved
gnomonic approach is proposed to estimate natural mortality throughout different
life stages in marine stocks using the gnomonicM package written in R software. This
package was built to require data about (i) the number of gnomonic intervals, (ii)
egg stage duration, (iii) longevity, and (iv) fecundity. With this information, it is
possible to estimate the duration and natural mortality (Mi) of each gnomonic interval.
The gnomonicM package uses a deterministic or stochastic approach, the latter of
which assesses variability in M by assuming that the mean lifetime fecundity (MLF)
is the main source of uncertainty. Additionally, the gnomonicM package allows the
incorporation of auxiliary information related to the observed temporal durations of
specific gnomonic intervals, which is useful for calibrating estimates ofM vectors. The
gnomonicM package, tested via deterministic and stochastic functions, was supported
by the reproducibility and verification of the results obtained from different reports,
thus guaranteeing its functionality, applicability, and performance in estimating M
for different ontogenetic developmental stages. Based on the biological information of
Pacific chub mackerel (Scomber japonicus), we presented a new case study to provide a
comprehensive guide to data collection to obtain results and explain the details of the
application of the gnomonicM package and avoid itsmisuse. This package could provide
an alternative approach for estimating M and provide basic input data for ecological
models, allowing the option of using estimates of variable natural mortality across
different ages, mainly for life stages affected by fishing. The inputs for the gnomonicM
packages are composed of numbers, vectors, or characters depending on whether the
deterministic or stochastic approach is used, making the package quick, flexible, and
easy to use; this allows users to focus on obtaining and interpreting results rather than
the calculation process.
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INTRODUCTION
Mortality includes all factors that reduce the abundance of a population, and mortality
has both natural and non-natural sources. Natural mortality (M ) is defined as the rate of
loss in a fish stock from natural (non-fishing) causes; natural mortality can be influenced
by density-dependent (e.g., predation, cannibalism, disease, size) or density-independent
(e.g., oceanographic variables, food availability) factors (Pauly, 1980; Hampton, 2000;
Beamish & Mahnken, 2001). Natural mortality is one of the most influential input
parameters in population dynamics and stock assessment models and is usually assumed
to be a constant value for all ages and across time. Nevertheless, there is overwhelming
evidence that M is likely to vary substantially during the life history of a species, and
individuals usually diminish in M from early stages to adults in a population depending
on age, length, or weight (Caddy, 1991; Caddy, 1996; Lorenzen, 1996; Wang & Haywood,
1999) or over interannual or greater time scales (Zheng, Murphy & Kruse, 1995; Chu, Chien
& Lee, 2008; Johnson et al., 2014).

Different methods have been used to estimate M. The procedures most commonly
reported in the literature include direct methods such as tag-recapture and telemetry
(Hearn, Pollock & Brooks, 1998; Pine et al., 2003; Pollock, Jiang & Hightower, 2004);
estimations inside stock assessment or ecosystem models (Walters, Christensen & Pauly,
1997; Wang & Liu, 2006; Lee et al., 2011; Crone et al., 2019); and finally metapopulation
methods. These last methods are based on empirical equations that incorporate observable
life-history parameters for several species (e.g., growth rate, maximum age, sexualmaturity)
and environmental variables (e.g., mean sea surface temperature) (Alverson & Carney,
1975; Chen & Watanabe, 1989; Jensen, 1996; Kenchington, 2014; Pauly, 1980). Among these
procedures, metapopulationmethods are the most commonly used methods for estimating
M since they demand little information; however, the estimates obtained based on these
approaches can be biased and are always subject to great uncertainty (Vetter, 1988; Schnute
& Richards, 1995; Zheng, 2003).

Caddy (1991) andCaddy (1996) proposed an approach to calculating an indicative vector
of natural death rates at a given age that satisfies population replacement; in this approach,
the initial death rate is high, falls off steeply in the early months of life and plateaus later
on. The statistical proposal allows the estimation ofM from the egg stage to the adult stage
for short-lived species following a decreasing trend, as is assumed to occur throughout
the life history of species. Later, the ‘‘gnomonic model’’ was modified and extended to
long-lived species, including the addition of criteria for adjusting the number of gnomonic
intervals to the duration of real-life stages, improving the biological sense of the approach,
and incorporating variability in fecundity, thus providing estimates of uncertainty in the
outputs (Martínez-Aguilar, Arreguín-Sánchez & Morales-Bojórquez, 2005). These changes
increased the versatility and utility of the ‘‘gnomonic model’’ for estimating M in any
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marine and freshwater spawning species (Giménez-Hurtado, Arreguín-Sánchez & Lluch-
Cota, 2009; Martínez-Aguilar et al., 2010; González-Peláez et al., 2015; Aranceta-Garza et
al., 2016; Romero-Gallardo et al., 2018).

According to Caddy (1991) and Caddy (1996), the ‘‘gnomonic model’’ estimates M
values with biological and ecological sense; the statistical procedure is simple and increases
the realism in the changes of M that occur during the life cycle of a given species. In
this study, the gnomonic approach was improved by modifying some equations and the
estimation procedure. Additionally, a package called gnomonicM was written in the R
language, providing a quick and user-friendly tool with which to estimate M throughout
the different life stages of marine species. To demonstrate its functionality, the package
was applied to the data of previous studies, and the results obtained herein were compared
with the results reported in the original studies (Caddy, 1996; Martínez-Aguilar, Arreguín-
Sánchez & Morales-Bojórquez, 2005) and with those of other published works that used the
gnomonic approach. Finally, a detailed new case study focusing on Pacific chub mackerel
(Scomber japonicus) was presented, providing a guide for the entire process, from the data
compilation to the estimation ofM values.

MATERIALS & METHODS
The gnomonic model constitutes a distinctive approach for estimating natural mortality;
its strength is associated with the use of simple biological variables that can be obtained
from experimental or documented data. The main advantage of the gnomonic model is
its estimation of natural mortality values for the entire life cycle of marine organisms; this
is a feature of scientific utility because knowledge about mortality patterns during early
life stages (e.g., egg and larvae) is limited and has high uncertainty. In many cases, the
mortality of species in these stages can be estimated only under rearing conditions that
are often expensive. Thus, a freely accessible code was developed for obtaining natural
mortality estimates based on an improved version, with a new mathematical simplification
that allows an increased performance of the gnomonic model in comparison to the original
proposal published by Caddy (1991) and Caddy (1996).

Gnomonic interval model and new features
According to Caddy (1996) and Martínez-Aguilar, Arreguín-Sánchez & Morales-Bojórquez
(2005), the gnomonic method is supported by a negative exponential function in which
the independent variable is 1i, representing the temporal duration of the ithgnomonic
interval; for i = 1, 2, 3, . . . , n, the equation is expressed as follows:

Ni=

{
MLF ∗e−(Mi∗1i); for i= 1
Ni−1 ∗e−(Mi∗1i); for i> 1

(1)

where Mi is the average value of the natural mortality rate, which integrates the declining
death rate through1i andNi are the survivors from the previous1i. The initial population
for the first gnomonic interval could be assumed as: (i) the number of hatching eggs
(Caddy, 1996), (ii) the mean lifetime fecundity (MLF) (Caddy, 1996), or (iii) the number
of offspring per mating event (Lambert, 2008).
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In the gnomonic model, the estimation ofMi for each1i requires biological information
about (i) the number of developmental stages throughout the life cycle i∈ {1,...,n}, (ii)
the duration of the first life stage corresponding to the first gnomonic interval ( 11 = egg
stage duration), (iii) the MLF, and (iv) the lifespan of the species. In biological terms, the
MLF is inversely correlated with lifespan, except for specific groups such as semelparous
populations (e.g., squids) (Caddy, 1996). As additional information, the duration of the
other developmental stages (larvae, juvenile, adults) can be provided. The duration of the
second gnomonic interval is defined as12=α∗t2−1, where α is a proportionality constant,
while the successive gnomonic intervals are calculated as 1i= (α∗ ti−1)+ ti−1, where i≥ 3
up to the ith gnomonic interval. Mi is proportional to the life stage duration since G is
constant, which was expressed as follows:

Mi=
G

θi−θi−1

where G is the proportion of the overall natural death rate, being constant for all gnomonic
intervals (Caddy, 1996), which is the product ofMi∗1i and θi= (1i/tn)/365, representing
the annual proportional duration of each interval, where tn is the longevity of the species
in days (Martínez-Aguilar, Arreguín-Sánchez & Morales-Bojórquez, 2005).

The gnomonic approach is not applicable to marine mammals or sharks; the primary
assumption of the gnomonic method is based on the estimation of natural mortality from
a negative exponential function, similar to those used to estimate Z (total mortality).
According to this mathematical solution, there must be abundant individuals at time 0
(N0) to enable the decay in the number of individuals in the population to be estimated.
Conversely, whether only one pup or individual is born, the negative exponential function
cannot be solved.

Mathematical simplification, uncertainty, and sensitivity
In this study, some equations have been modified from Caddy (1996) related to (i) the
calculation of the duration of each subsequent gnomonic interval after the egg stage and (ii)
the estimation of the constant proportion of the overall natural death rate (G) to improve
the model performance during the computational process.

The duration of the first gnomonic interval (11) is equal to the time elapsed after the
moment of hatching (t1). The durations of the subsequent gnomonic intervals (i≥ 2) are
estimated as follows:

1i=11 ∗α∗ (α+1)(i−2)

where
1i is the duration of the gnomonic interval when i≥ 2;
11 is the duration of first gnomonic interval t1;
α is the proportionality constant; and
i is the i th gnomonic interval.
According to Caddy (1996) and Martínez-Aguilar, Arreguín-Sánchez & Morales-

Bojórquez (2005), the α and G parameters are estimated by numerical iterations using
Newton’s algorithm (Neter et al., 1996). The α value is estimated by minimizing the
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residuals until the sum of the durations of the gnomonic time intervals is equal to tn.
Unlike the iterative procedure previously used to estimate G, we propose an analytical
solution as follows:

Ni+1=Ni ∗e−G.
This equation could be expressed as follows:
Nn=N0 ∗

(
e−G

)n.
According to this equation, G can be estimated based on the total number of gnomonic

intervals i ∈ {1,...,n} and the value N0 =MLF . Furthermore, G is chosen so that the
number of individuals surviving to the last gnomonic time interval is Nn= 2, following
the assumption of stable population replacement with a 1:1 sex ratio; therefore, one female
fulfils the requirement for population replacement if the eggs are fertilized (Caddy, 1996).
The new equation for G is expressed as follows:

G=−ln

[(
2

MLF

) 1
n
]
.

Therefore, only the constant proportionality (α) parameter needs to be estimated. For this
purpose, theNEWUOA numerical optimization algorithm (Powell, 2006; Powell, 2008) was
used, available from the ‘‘minqa’’ package version 1.2.4 of R software (Bates et al., 2014; R
Core Team, 2020).

According to Martínez-Aguilar, Arreguín-Sánchez & Morales-Bojórquez (2005), the
variability in M was assessed assuming that MLF was the main source of uncertainty,
therefore simulating a total of j samples of MLF with a uniform distribution to determine
the uncertainty of Mi. Then, Mi estimates were obtained from n simulations per
gnomonic interval, obtaining the mean natural mortality rate (M i) and the standard
deviation (σMi). Another modification in the gnomonicM package is the assessment of
the uncertainty via a Monte Carlo simulation, which was improved via the inclusion
of three assumed probabilistic density functions for MLF defined as (i) uniform
MLF ∼ U (MLFmin,MLFmax), (ii) normal MLF ∼ N (µMLF ,σMLF ), and (iii) triangle
MLF ∼ Triangular(MLFmin,MLFmax ,cMLF ), where MLFmin and MLFmax represent the
minimum and maximum of the observedMLF, respectively; µMLF and σMLF are the mean
and standard deviation of the observedMLF, respectively; and cMLF is the mode of theMLF
in the triangular distribution. A Monte Carlo simulation must provide a correct stochastic
orientation for estimating confidence intervals because the procedure (a) quantifies
uncertainty based on statistical distributions derived from data rather than arbitrarily
chosen distributions, (b) is unbiased, (c) is accurate, and (d) uses few distributional
assumptions (Haddon, 2011; Magnusson, Punt & Hilborn, 2013). Additionally, in this
study, sensitivity can be tested assuming different values in the number of gnomonic
intervals, longevity, or egg stage duration in the gnomonicM package. The sensitivity
analysis does not require assumptions regarding statistical distributions, such that the
user can choose, even arbitrarily, the values of the input parameters (Blackhart, Stanton &
Shimada, 2006;Magnusson, Punt & Hilborn, 2013).
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The gnomonicM package
The source code of the gnomonicM package is freely available from CRAN (https:
//cran.r-project.org/web/packages/gnomonicM/index.html) or on GitHub at https:
//github.com/ejosymart/gnomonicM. This package has been built to provide a user-
friendly method for estimating the natural mortality (Mi) and temporal duration of
each gnomonic interval, the α parameter of the gnomonic model, and the proportion of
the overall natural death rate (G). The main arguments from the gnomonicM package
are described in Table 1, and a detailed description is presented in the package manual
(https://cran.r-project.org/web/packages/gnomonicM/gnomonicM.pdf). Additional print
and plot methods for the deterministic and stochastic approaches are provided to show
the results.

Testing the gnomonicM package
For the application of the improved gnomonic approach and to show the functionality of the
gnomonicM package, gnomonicM was tested via the deterministicmethod andby comparing
the estimates with the results of two species reported by Caddy (1996); the species had (i)
seven gnomonic intervals, (ii) longevity of one year (365 days), (iii) egg stage durations of
2 days, and (iv) MLF values of 200,000 and 135 eggs. Additionally, the methodology was
applied to published data that used the gnomonic model, and the estimates were compared
with the results provided by the cited authors (see Ramírez-Rodríguez & Arreguín-Sánchez,
2003; Martínez-Aguilar, Arreguín-Sánchez & Morales-Bojórquez, 2005; Giménez-Hurtado,
Arreguín-Sánchez & Lluch-Cota, 2009; Martínez-Aguilar et al., 2010; Aranceta-Garza et al.,
2016; Romero-Gallardo et al., 2018 for details). This approach allowed the assessment of
the application of gnomonicM for different taxa (fish and invertebrates) and life histories
(demersal, pelagic, benthic, and short and long-life spans). The gnomonicM package was
supported by the reproducibility and verification of the results obtained from different
reports, thus guaranteeing its functionality, applicability, and performance in estimating
M for different ontogenetic developmental stages.

The case of Pacific chub mackerel
For illustrative purposes with the entire estimation process, Pacific chub mackerel was
used as an example. Thus, this section indicates the data requirements and the steps taken
to apply the gnomonicM package, highlighting its flexibility in parameter estimations,
variability in fecundity, the selected probabilistic density function, and the inclusion of
auxiliary information on known gnomonic intervals different from the egg stage.

(a) Choosing the number of gnomonic intervals. These intervals are defined a priori and
should be well represented since they are associated with the ontogenetic development
stages, exhibiting realistic subunits of biological time. For Pacific chub mackerel, the
biological-ecological criteria indicated the presence of eight gnomonic intervals, which are
shown in Table 2. This means that the intervals should be defined following the gnomonic
time framework since they are a key input in the model.

(b) Defining the egg stage duration. For Pacific chub mackerel,Hunter & Kimbrell (1980)
reported that eggs of this species hatched in 56 h at 19 ◦C; the author also provided
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Table 1 Input arguments for the gnomonicM package.

Argument Type Description Default Required

nInterval Numeric An integer specifying the number of gnomonic intervals – Yes
eggDuration Numeric A single numeric value with the egg stage (first gnomonic

interval) duration in days.
– Yes

addInfo Numeric vector A numeric vector with additional information (if available)
related to the observed duration of the gnomonic intervals
different from the egg stage.

NULL No

longevity Numeric An integer indicating the lifespan of the species specified in
days.

– Yes

fecundity Numeric A numeric value indicating the mean lifetime fecundity
expressed as the number of eggs produced for a female. If a
‘‘normal’’ or ‘‘triangular’’ distribution is assumed, this value
will be interpreted as the mean or the mode, respectively.

NULL Yes

distr Character string Name of the probabilistic density function to be applied,
which must be defined as: ‘‘uniform’’, ‘‘normal’’,
‘‘triangle’’.

‘‘uniform’’ Yes

sd_fecundity Numeric A numeric value indicating the standard deviation of
fecundity if a ‘‘normal’’ distribution is assumed.

NULL Yes

min_fecundity Numeric A numeric value indicating the minimum range of
fecundity if a ‘‘uniform’’ or ‘‘triangle’’ distribution is
assumed.

NULL Yes

max_fecundity Numeric A numeric value indicating the minimum range of
fecundity if a ‘‘uniform’’ or ‘‘triangle’’ distribution is
assumed.

NULL Yes

a_init Numeric A numeric value indicating the initial (α) parameter related
to the proportionality constant which will be numerically
optimized.

2 Yes

niter Numeric An integer value representing the number of iterations. 999 No
seed Numeric A single value interpreted as an integer ensures that the

same (pseudo) random numbers will be generated each
time the script is executed.

7388 No

information about the fluctuation of the elapsed hatching time as a function of temperature
under controlled conditions, ranging from 33 to 117 h at 23 and 14 ◦C, respectively.

(c) Including additional information if available (such as the duration of a specific cycle
life stage different from the egg stage). Occasionally, some biological information about the
duration of a specific life cycle stage is reported, mainly including knowledge of early stages
(e.g., the larvae stage) obtained from rearing conditions. If additional information on a
known gnomonic interval (life development stage) is provided, then this time duration
will not be estimated. For Pacific chub mackerel, no additional information was used in
the estimation process.

(d) Including the longevity of the species. The concept of longevity in this study is related
to the maximum age that a species could reach, and it is based on growth studies supported
by reading otoliths, statoliths and other hard structures, such that the age structure of a
population can be known (Beverton, 1987). For Pacific chub mackerel, according toMendo
(1984) and Caramantin-Soriano, Vega-Pérez & Ñiquen (2008), a longevity of 8 years (2,920
days) was used.
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Table 2 Gnomonic intervals and the duration of each development stage based on the observed information for the Pacific chubmackerel
(Scomber japonicus).

Gnomonic
interval

Development
stage

age (days) Mean
length
(mm)

References*

start end elapsed

1 Egg 0 2.3 2.3 1.05–1.14 Hunter & Kimbrell (1980)
2 Pre-larvae 2.3 6 3.7 2.0–3.7 Hunter & Kimbrell (1980)
3 Post-larvae 6 16 10.0 3.5–15.0 Hwang and Lee (2005) and Hunter & Kimbrell (1980)
4 Early juvenile 16 47 31 15–30, 24.6 Watanabe (1970); Hwang and Lee (2005) and Nakayama et

al. (2003)
5 Juvenile 47 150 103 30–70 Watanabe (1970) and Castro and Santana (2000)
6 Early adult 150 400 250 90–140 Yasuda and Hiyama (1957) and Castro and Lorenzo (1991)
7 Adult 400 1,063 663 140–280 Torrejón-Magallanes et al. (2017)
8 Late adult 1,063 2,920 1857 281–460 Kotlyar and Abramov (1982), Castro and Santana (2000)

Notes.
*Focus on mean length (mm) and age estimates.

Table 3 Fecundity estimations reported in the literature for the Pacific chubmackerel (S. japonicus).

Fecundity Min Max SD References

78,174 11,805 144,543 – Peña, Alheit & Nakama (1986)
28,978 7,603 53,921 1,529 Buitrón & Perea (1998)

(e) Assigning fecundity values. Fecundity is defined as the number of offspring per
mating event (Lambert, 2008), and for the gnomonicM package, fecundity represents the
population at time 0; this input can be highly variable depending on several biological,
physiological, and environmental conditions (Kjesbu et al., 1998; Zwolinski, Stratoudakis
& Sares, 2001; Lambert, 2008). Therefore, the gnomonicM package includes two options:
the first is a deterministic approach in which the uncertainty in fecundity is ignored; the
second approach involves stochasticity and includes the uncertainty of the fecundity value
using a Monte Carlo simulation. For the latter option, the user must assume a probabilistic
density function (uniform, normal, or triangular) linked to the fecundity. The procedure
provides as outputs the precision of the natural mortality value for each gnomonic interval
selected in step a). For Pacific chub mackerel, a uniform probabilistic density function was
used based on the fecundity values reported by Peña, Alheit & Nakama (1986) and Buitrón
& Perea (1998) (Table 3).

(f) Assigning an initial value to the α parameter. This step allows a statistical solution
when the gnomonic model is optimized. The α parameter has a default initial value equal
to 2. In cases where the information on this parameter is limited, the user should provide
an acceptable α parameter according to the taxonomic group studied, using references
previously reported for fishes (demersal and pelagic fishes), crustaceans (shrimp), molluscs
(cephalopod and clams), or holothurians (sea cucumbers) (see Table S1). In this way, the
α parameter represents an initial value that is able to prevent the algorithm from becoming
stuck in local minima.
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Table 4 Results using the data from Caddy (1996) for two species with high fecundity MLF= 200,000
eggs and low fecundity MLF= 135 eggs. The value in parenthesis with asterisk refers to a difference in
the estimation with respect to the original work.

Longevity= 365 days
MLF= 200,000
G= 1.645
α= 1.382
Gnomonic interval Duration (year) No. survivors M ī (year−1)

1 0.005 38,614 300.16
2 0.008 7,455 217.25
3 0.018 1,439 91.22 (*91.27)
4 0.043 278 38.30
5 0.102 54 16.08
6 0.204 10 6.75
7 0.580 2 2.84
MLF= 135
G= 0.602
α= 1.382
1 0.005 74 109.82
2 0.008 41 79.48
3 0.018 22 33.37
4 0.043 12 14.01
5 0.102 7 5.88
6 0.244 4 2.47
7 0.580 2 1.04

RESULTS
The gnomonicM package was tested successfully as the results obtained from previous
applications were reproducible with the deterministic and stochastic approaches. The
results estimated from the gnomonicM package using the deterministic approach and
the input data provided by Caddy (1996) for species with high and low fecundity
values are shown in Table 4 and Fig. 1. For comparative purposes between the
values estimated by the gnomonicM package and Caddy (1996), see https://cran.r-
project.org/web/packages/gnomonicM/vignettes/gnomonicM.html for details.

The gnomonicM package with the stochastic approach was also successful when
applied to other data sources, mainly for shrimp (Farfantepenaeus duorarum), Pacific
sardine (Sardinops caeuruleus), and red grouper (Epinephelus morio); for these species,
differences were not found among the parameters (G, α), durations of gnomonic intervals,
or natural mortality values (Tables S1A, S1B, S1C). Conversely, for jumbo squid (Dosidicus
gigas), white shrimp (Litopenaeus vannamei), and sea cucumber (Isostichopus badionotus),
differences were found among the parameters, durations of gnomonic intervals, and natural
mortality values estimated from the gnomonicM package.With these differences, although
they varied within similar numerical scales, the results were not completely reproducible.
The reasons for these difference could be explained by three sources of variability: (a)
the use of additional information not provided in the reports, (b) the statistical routine
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Figure 1 Estimation of natural mortality (M) by each gnomonic interval based on data provided in
Caddy (1996). (A) Species with higher MLF= 200,000 eggs. (B) Species with low MLF= 135 eggs. Each
data point indicates the value for a particular gnomonic interval. The black line represents the rolling
mean.

Full-size DOI: 10.7717/peerj.11229/fig-1

used for generating random numbers related to theMLF, or (c) possibly some parameters
that could have been held constant during the numerical optimization process. The
differences in natural mortality could be classified as slight for jumbo squid and white
shrimp, while that for sea cucumber was greater (Tables S1D, S1E, S1F). Specifically, for
Isostichopus badionotus the natural mortality estimates reported by Romero-Gallardo et al.
(2018) did not include the egg stage duration as the first gnomonic interval; instead, the
authors used the duration to early auricularia (planktonic larvae), and this substitution
represents a misspecification in the input data, indicating methodological infringement on
the gnomonic method that is easily avoidable using the gnomonicM package.

For the case of Pacific chub mackerel, the results based on the stochastic method are
presented in Table 5.When the temporal duration of the egg stage was varied, the estimated
durations of the following gnomonic intervals in comparison with their observed durations
(Table 2) did not show significant differences (Kruskal–Wallis, p= 0.94). Comparatively,
the estimates based on an egg duration of 56 h (2.33 days, α= 1.77) were the most similar
to the observed duration values. The choice of the egg stage duration influenced the
estimates of M , showing significant differences when comparing M values for the same
gnomonic intervals (ANOVA, p< 0.01). The estimation ofM i and the standard deviation
σi decreased with age independently of the different scenarios (different egg stage durations
and MLF values). The values of M i for the early stages, from egg to larvae, were relatively
high (344.44 yr−1–23.87 yr−1), while theM i values for adults (M 7= 0.62 yr−1 –0.73 yr−1)
and late adults (M 8= 0.22 yr−1 –0.27 yr−1) showed low variability and the lowest values
(Fig. 2, Table 5). The parameter α was associated with the durations of life-history stages,
showing an inverse relation with the egg stage duration, and it was independent of theMLF ;
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the G parameter had a constant value under three different egg stage duration scenarios,
and its magnitude increased with greaterMLF values (Table 5).

DISCUSSION
The gnomonicM package and other methods
Compared to the method employed by Caddy (1996), the gnomonicM package uses
simplified algebra, increasing its parsimony. The original gnomonic model proposed
estimations of the α and G parameters in two independent numerical optimizations, while
the gnomonicM package used an algebraic estimator for G and an analytic estimator for α
supported by theNEWUOAnumerical optimization algorithm (Powell, 2006;Powell, 2008).
Another feature of the gnomonicM package is the biological and ecological sense linking
the gnomonic concept to the life cycle of any given species, expressed as the development
of the ontogenetic stages (Martínez-Aguilar, Arreguín-Sánchez & Morales-Bojórquez, 2005).
Moreover, the gnomonicM package allows the incorporation of auxiliary information for
specific gnomonic intervals related to their observed time durations; this contribution
is useful for calibrating estimates of M vectors. Furthermore, the gnomonicM package
provides confidence intervals (CI 95%) of natural mortality for each estimated gnomonic
interval, assuming that the main source of uncertainty is the mean lifetime fecundity.
The latter can be assumed to be non-informative (i.e., with a uniform distribution) or
informative (i.e., with normal and triangular distributions). The choice of the probabilistic
density function will affect the natural mortality estimates; however, the uncertainty
regarding fecundity must not be limited to only non-informative distribution (Martínez-
Aguilar, Arreguín-Sánchez & Morales-Bojórquez, 2005).

According to Quinn & Deriso (1999) and Kenchington (2014), the natural mortality
estimationmethods require different input data and variables, and some of these data could
be difficult to obtain because they are usually associated with extensive time series (i.e.,
length-frequency analysis and some stock assessmentmodels); others, such as tag-recapture
and telemetry in oceans, are usually expensive and sometimes provide imprecise estimates
(Hearn, Pollock & Brooks, 1998; Pine et al., 2003; Pollock, Jiang & Hightower, 2004), while
some are supported by knowledge of the age structure of a population and its growth
parameters (in methods based on the life history and maximum observed age of a species).
These meta-analysis estimators are biological generalizations that use multiple regression
analysis with independent variables, such as growth and environmental variables, whose
application is limited to certain marine taxa. Regarding the uncertainty, a common feature
of the above methods is the absence of an uncertainty calculation, expressed as a confidence
interval (Kenchington, 2014). Although the gnomonicM package requires specific biological
data, it provides estimates of M for the entire life cycles of marine organisms; estimations
are commonly scarce for egg and larval stages, and the gnomonicM package also includes
an analysis of uncertainty represented by the confidence intervals of M. Furthermore, the
sensitivity of the estimatedM values can be tested by varying the duration of the egg stage,
since this stage is a critical input data for the gnomonic model, affecting the estimated M
values mainly at the early stages of development. Finally, the gnomonicM package provides
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Table 5 Estimates of natural mortality (M) and durations for each gnomonic interval for the Pacific chubmackerel (Scomber japonicus) with different MLFs (as-
suming a uniform distribution), and egg stage durations.

Longevity= 2,920 days
MLF= 78,174 [11,805–144,543]
G= 1.30
α= 1.99 α= 1.77 α= 1.49

Stage of development Duration
(days)

M ī
(year−1)

σi Duration
(days)

M ī
(year−1)

σi Duration
(days)

M ī
(year−1)

σi

Egg 1.38 344.44 0.05750 2.33 202.98 0.03389 4.88 97.15 0.01622

Prelarvae 2.73 173.31 0.02893 4.13 114.67 0.01914 7.28 65.06 0.01086

Postlarvae 8.16 58.01 0.00968 11.44 41.40 0.00691 18.15 26.09 0.00436

Early juvenile 24.39 19.42 0.00324 31.69 14.94 0.00249 45.25 10.46 0.00175

Juvenile 72.86 6.50 0.00109 87.79 5.40 0.00090 112.83 4.20 0.00070

Early adult 217.66 2.18 0.00036 243.17 1.95 0.00033 281.33 1.68 0.00028

Adult 650.25 0.73 0.00012 673.59 0.70 0.00012 701.43 0.68 0.00011

Late adult 1,942.57 0.27 0.00004 1,865.86 0.25 0.00004 1,748.86 0.24 0.00005

MLF= 28,978 [7,603–53,921]

G= 1.19

α= 1.99 α= 1.77 α= 1.49

Egg 1.38 315.16 0.04733 2.33 185.72 0.02789 4.88 88.89 0.01335

Prelarvae 2.73 158.58 0.02381 4.13 104.92 0.01576 7.28 59.53 0.00894

Postlarvae 8.16 53.08 0.00797 11.44 37.88 0.00569 18.15 23.87 0.00359

Early juvenile 24.39 17.77 0.00267 31.69 13.67 0.00205 45.25 9.57 0.00144

Juvenile 72.86 5.95 0.00089 87.79 4.93 0.00074 112.83 3.84 0.00058

Early adult 217.66 1.99 0.00030 243.17 1.78 0.00027 281.33 1.54 0.00023

Adult 650.25 0.67 0.00010 673.59 0.64 0.00010 701.43 0.62 0.00009

Late adult 1,942.57 0.25 0.00003 1,865.86 0.23 0.00003 1,748.86 0.22 0.00004
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Figure 2 Natural mortality (M) vector estimated for Pacific chubmackerel (Scomber japonicus).
Columns represent a species with higher MLF= 78,174 and lower MLF= 28,978 values. Rows represent a
different egg stage duration: (A) 33 h, (B) 56 h, (C) 117 h, respectively.

Full-size DOI: 10.7717/peerj.11229/fig-2

estimations of M via numerical optimization in comparison to deterministic estimators
(see Kenchington, 2014).

The Pacific chub mackerel case and details about gnomonicM
applications
The aim of presenting a new case study was to provide a comprehensive guide for data
collection and obtaining results and to explain the details of the application of the
gnomonicM package to avoid its misuse. Based on the gnomonic approach, biological
information regarding the life cycle of a given species must include the temporal duration
of the egg stage, longevity, and fecundity. For Pacific chub mackerel, the biological data
were collected from several sources (Table 1). At this step, the main challenge was the
different criteria among authors focusing on the definitions of biological stages and their
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durations. For example, in the larval stage, it is common to find subclassifications, referred
to as pre-larvae, early larvae, larvae, yolk-sac larvae, and post-larvae stages; for some species,
there are even subcategories defined as I or II (e.g., Martínez-Aguilar, Arreguín-Sánchez
& Morales-Bojórquez, 2005; González-Peláez et al., 2015). Moreover, contrasting results
regarding the development stage can be documented from rearing conditions or field
observations. The solution to this problem can be addressed by the well-defined concept of
the gnomonic interval (Caddy, 1991; Caddy, 1996). This means that some stages could be
considered individually or grouped to make up a particular gnomonic interval considering
the biological and ecological characteristics of the interval, with the purpose that each
successive gnomonic interval is greater than the previous interval in its duration. If this
condition is not satisfied, then the results will be biased due to the misspecification of
data. Another cause can be related to the lack of specific biological data for the species
studied; therefore, some generalizations could be assumed, such as, for example, using a
characteristic (e.g., duration) of the development stages of other members of the same
taxonomic genus, even from different geographical regions.

Once the data have been collected, they are introduced directly as input arguments (see
Table 1). These inputs are simply composed of numbers, vectors, or characters depending
on the approach used, either deterministic or stochastic, providing a quick, flexible, and
user-friendly tool with characteristics that a software package should have (Wilson et al.,
2017). This approach allows users to focus on obtaining and interpreting results rather
than the calculation process. Therefore, when the deterministic approach is selected via the
gnomonic function, the input data must be organized as follows:

x <- gnomonic(nInterval = 8,

eggDuration = 2.33,

longevity = 2920,

fecundity = 78174,

a_init = 2)

In the case of the stochastic approach via the gnomonicStochastic function, the input
data must be organized as follows:

x <- gnomonicStochastic(nInterval = 8,

eggDuration = 2.33,

longevity = 2920,

min_fecundity = 11804,

max_fecundity = 144543,

distr = "uniform",

niter = 1000,

a_init = 2).

For any option selected previously, the numerical outputs can be obtained from
print(x), and the graphic representation is available for the user from plot(x).

The scenarios described above represent a sensitivity analysis available from the
gnomonicM package; the rationale is supported by the role of the environmental variability
influencing the fecundity and the egg stage duration, both of which have impacts on the
natural mortality of S. japonicus. The sensitivity analysis must be based on biological and
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Table 6 Estimates and assumed values of natural mortality (M) for the Pacific chubmackerel (Scomber japonicus) based on different methods.

Stage of
development

M (year−1) Area Method Reference

Fish larvae 51.1 Japan Rearing conditions Watanabe (1970)
Adults 0.52–0.53 Peru Pauly estimator Caramantin-Soriano, Vega-Pérez & Ñiquen (2008)
Adults 0.5 California current Regression of Z on F Parrish and MacCall (1978)
Adults 0.5 Eastern Central Pacific *Regression of Z on F Patterson et al. (1993)
Adults 0.5 Southern California -

Northern Baja California

*Regression of Z on F MacCall et al. (1985)

Juveniles - Adults 1.01 Gulf of California Length frequency data Cisneros et al. (1990)
Adults 0.5 Japan *Empirical equation Yatsu et al. (2002)
Juvenile - Adults 0.81 U.S.A, Mexico Statistical catch at age Crone et al. (2019)

Notes.
*Assumed value.

ecological knowledge of the analysed species, such that the scenarios estimated from this
approach can be plausible. In this way, the use of the gnomonicM package requires clear
criteria for estimating the number of scenarios useful for each case. In this study, we tested
scenarios based on the duration of the egg stage and MLF. We chose the scenario of 56 h
(2.33 days) as the ‘‘best’’ scenario because the estimations of the durations of the gnomonic
intervals obtained under this scenario were very similar to the observed values (Tables 2
and 5). Additionally, these durations increased over the life cycle following the gnomonic
time concept (Caddy, 1996). TheM values for different stages were similar to the reported
values for the egg and larvae stages (Watanabe, 1970; Ware & Lambert, 1985), and the
differences were presented for the adult phases due to the method used, such as catch curve
analysis, stock assessment and empirical equations (Tables 5 and 6).

The natural mortality values estimated from the gnomonicM package for Pacific chub
mackerel showed an adequate biological trajectory through the different ontogenetic
developmental stages, with the highest values observed during the early development
stages, indicating that the gnomonic times selected for this species were adequately
grouped. Regarding ecological theory, the early stages of Pacific chub mackerel are exposed
to high rates of predation by planktonic organisms and fish. This species has a variety of
predators depending on the phase of development. The main predators at different sizes of
Pacific chub mackerel, including juveniles, are hakeMerluccius gayi and the eastern bonito
Sarda chilensis (Ojeda & Jaksic, 1979; Fuentes, Antonietti & Muck, 1989). Cannibalism is
another source that increases natural mortality, and several studies on this species have
shown evidence of cannibalism in eggs and individuals 8-mm and larger, particularly in
spawning grounds. It is important to mention that if the egg stage duration is long or if the
transition from egg to larvae is slow, the organism may be subject to predation mortality
for longer periods, resulting in high natural mortality (Pitcher & Hart, 1982).

Finally, the improved approach and the use of the gnomonicM package adequately
represented the biological developmental stages of the species assessed in this study over its
life cycle. Additionally, estimates of M produced by the gnomonicM package may provide
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basic input data to ecological models, enabling them to use estimates of variable M across
different ages groups, mainly for the life stages affected by fishing.

CONCLUSIONS
The improved gnomonic approach implemented in the gnomomicM R package provides a
method for estimating natural mortality (M ) throughout the different life stages of aquatic
species, fish, and invertebrates. The data required for gnomonicM must include, at least, the
number of gnomonic intervals, egg stage duration, longevity, and fecundity. These input
data have intrinsic uncertainty: (a) fecundity is associated with high levels of uncertainty
because the mean lifetime fecundity depends on specific studies on reproductive biology
and is influenced by environmental variability, density-dependent effects, and biological
features of the stock; (b) the egg stage duration is commonly taken from rearing studies
under controlled conditions (e.g., temperature, salinity) as the duration can rarely be
obtained from field data; (c) the longevity depends on the maximum age identified from
the age structure for the population studied; thus, the longevity requires specific studies
of hard structures (e.g., otoliths, spines, vertebrae); the number of gnomonic intervals
must be determined, these must be established using biological criteria when using the
gnomonicM package, such that the ontogenetic development stages can be useful in
reducing the uncertainty in the number of intervals selected. The number of gnomonic
intervals provided must be such that the duration of each successive gnomonic interval is
greater than the previous one (1i), which implies that several development stages can be
grouped to satisfy this assumption. Specifically, the last gnomonic interval would group
the ontogenetic stage of adult individuals; this criterion enables this interval to be highly
flexible. For annual-lived species several months could constitute a group (the lifetime for
adults), while for long-lived species several years could be grouped, these being linked to the
age structure of the adult population. Additionally, gnomonicM allows the incorporation
of auxiliary information related to the observed temporal duration of specific gnomonic
intervals, which is useful for calibrating estimates of M vectors. Finally, the additional
plot() and print() functions are provided for numerical and graphical representations,
making the package quick, flexible, and easy to use and allowing users to focus on obtaining
and interpreting results rather than on the calculation process.
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