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1.  INTRODUCTION

The eukaryotic genome is hierarchically organized
into chromatin by repeating blocks of nucleosomes
(Cutter & Hayes 2015), which are composed of a ‘core’,
a linkerDNA,andalinkerhistone.The structure of the
core is relatively invariant from yeast to metazoans
(White et al. 2001), and is composed of 2 copies of 4

different histone proteins (H2A, H2B, H3, and H4)
(Arents & Moudrianakis 1993).

Among the pathogens affecting shrimp farming
production in the world, the white spot syndrome
virus (WSSV) (family Nimaviridae, genus Whispo -
virus) is regarded as the most lethal, highly conta-
gious, and widespread viral agent (Sánchez-Paz
2010). Since its discovery, the virus has led to eco-
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nomic losses estimated in the range of US$ 8−15 bil-
lion yr−1 (Flegel et al. 2008, Stentiford et al. 2012).

Previous studies elucidating the gene expression
profile of WSSV in infected hosts found that the gene
encoding the non-structural protein ICP11 is highly
expressed at both the transcriptional and translational
levels (Wang et al. 2007). Further evidence revealed
that the ICP11 protein directly interacts with the his-
tones H2A, H2B, and H3, preventing the association
of the DNA−histone complex and disrupting the as-
sembly of the host cell nucleosome (Wang et al. 2008).
Moreover, IPC11 interacts, as a DNA mimic, with the
cytosolic forms of the histones H3 and H2A.x, inter-
fering with its translocation into the nucleus, and in-
terfering with nucleosome assembly (Wang et al.
2008). Since under normal conditions, the levels of
H2A.x increase at sites of double-strand DNA breaks,
its accumulation in the cytosol of WSSV-infected cells
suggests that ICP11 additionally prevents DNA dam-
age repair, which has been reported as an antiviral
strategy with profound consequences on viral repli-
cation (Lilley et al. 2011, Luftig 2014). Feng et al.
(2014) found that the levels of tyrosine phosphoryla-
tion of the histones H2A, H3, and H4 changed signifi-
cantly during a WSSV infection in the shrimp Fen-
neropenaeus chinensis. Furthermore, DNA damage
(nuclear shrinkage and DNA fragmentation) was ob-
served in WSSV-infected hemocytes of F. chinensis
(Feng et al. 2014). As histone tyrosine phosphory -
lation is a critical modification related to DNA repair
and apoptosis in response to DNA damage, it seems
plausible to correlate the tyrosine phosphorylation
with the ob served nuclear abnormalities, which may
be a viral strategy to cause cell lysis, contributing to
the spread of the pathogen. Although it is well estab-
lished that the WSSV provokes nuclear hypertrophy
and induces DNA damage (Abdel-Salam 2014), little
is known about its effects on the expression profile of
the histones encoding genes. Therefore, we studied
the pattern of expression of the shrimp histones H2A
and H4 during WSSV in vivo infection. This may con-
tribute to a more comprehensive understanding of
the deleterious changes occurring in the nucleus that
may influence an apoptotic state of the host cell dur-
ing the disease process.

2.  MATERIALS AND METHODS

2.1.  Shrimp samples

Specimens of the shrimp Penaeus vannamei (aver-
age weight: 12.5 ± 0.51 g) were sampled from a com-

mercial shrimp farm located in Sonora, Mexico.
Shrimp were maintained in 2 plastic tanks of 500 l
with purified, aerated, and UV-treated seawater,
and acclimated for 5 d at 28°C and 34 ppt salinity.
Organisms were tested for the presence of Penaeus
stylirostris penstyldensovirus 1 (PstDV1) and WSSV
by methods described by Encinas-García et al.
(2015) and Mendoza-Cano & Sánchez-Paz (2013),
respectively.

2.2.  WSSV inoculum preparation and experimental
infection

A WSSV inoculum was prepared according to the
method of Escobedo-Bonilla et al. (2005), and viral
load was estimated by real-time PCR (qPCR) target-
ing a region of the VP28 encoding gene (Mendoza-
Cano & Sánchez-Paz 2013). (For the kinetics of
WSSV replication, see Fig. 1).

A total of 84 healthy shrimp were distributed
equally into tanks of 500 l of seawater, into the follow-
ing 2 treatments: the control group, inoculated with
100 µl of a 15.4 mM saline solution; and the infected
group, intramuscularly injected into the third abdom-
inal somite with 100 µl of WSSV inoculum (5.71 ×
102 copies µl−1). Gills and pleopods were carefully
dissected from 6 shrimp from each treatment group at
0, 3, 6, 12, 24, 48, and 72 h post inoculation (hpi). Sam-
ples were fixed in 1 ml of RNAlater™ (Thermo Fisher
Scientific) and stored until use. No moribund shrimp
were detected during the experiment.

DNA was isolated from the pleopods using DNA-
zol® reagent (Invitrogen) following the manufac-
turer’s specifications. Standard curves, based on the
amplification of a fragment of the WSSV VP28 gene,
were prepared for quantification of viral load in test
samples. Pleopods were chosen for estimation of
WSSV load because these appendages have shown a
similar WSSV replication cycle as other tissues (Chen
et al. 2011)

2.3.  RNA isolation and cDNA synthesis

Total RNA was isolated from the gills using TRIzol
reagent (Invitrogen) according to the manufacturer’s
instructions. Concentration of total RNA was esti-
mated by a NanoDrop Lite spectrophotometer (Ther -
mo Scientific) at 260 nm absorbance, and purity was
assessed by the ratio of absorbance at 260/280 nm
(OD260/280 ≥ 1.8). RNA integrity was evaluated on 1%
denaturing agarose gels following the methodology
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described by Aranda et al. (2012). Genomic DNA was
removed from RNA samples using DNase I recombi-
nant RNase-free (Roche) according to the manufac-
turer’s instructions. RNA was transcribed into cDNA
using the SuperScript™ First-Strand Synthesis Sys-
tem for RT-PCR (Invitrogen) according to the manu-
facturer’s protocol.

2.4.  Primer design and quantitative real-time PCR
(qPCR)

Primers for quantitative real-time RT-PCR were
designed from the H2A and H4 sequences of P. van-
namei (GenBank accession numbers AY576483 and
MH311299, respectively) using Primer3 software
(http:// bioinfo.ut.ee/primer3-0.4.0/primer3/input.
htm), and tested for specificity using BLASTn (http://
blast. ncbi. nlm. nih. gov/ Blast. cgi) (Altschul et al.
1990). Primers and amplicons are listed in Table 1.

Ten-fold dilution series of cDNA amplified with the
H2A and H4 primers were used to construct a standard
curve for each gene (for H2A, ranging from 2.62 × 107

to 2.62 × 103 copies µl−1; and for H4, from 7.1 × 108 to 7.1
× 102 copies µl−1). Samples were analyzed individually
in triplicate. Quantification of the ab solute mRNA
copy number of the shrimp H2A and H4 genes was
performed in a final reaction volume of 10 µl,
consisting of 5 µl of iQTM SYBR® Green Supermix
(BioRad), 0.25 µl of each primer (10 pmol), 1 µl of cDNA
template (160 ng µl−1), and 3.5 µl of nuclease-free wa-
ter, in 96-well plates using the LightCycler 480 system
(Roche). Cycling conditions for the am plification were
1 cycle at 98°C for 3 min, followed by 35 cycles at 98°C
for 15 s and 63°C for 60 s. Each PCR reaction was run in
triplicate. PCR efficiencies for H2A and H4 were 96.41
and 98.48%, respectively, and the correlation coeffi-
cients (R2) characterizing each standard curve were
0.9955 for H2A and 0.907 for H4.

2.5.  Statistical analysis

The resulting data were tested for normality and
 homogeneity using the Shapiro-Wilk test. Since all
data were normal, parametric statistics were applied,
by using a 1-way ANOVA (p ≤ 0.05). Additionally,
Dunn’s post hoc test for multiple comparisons was
performed, to identify significant differences be tween
the control group and the WSSV-infected group at 0,
3, 6, 12, 24, 48, and 72 hpi. Statistical analysis was per-
formed using the software SigmaPlot 11.0.

To examine the relationship between the expres-
sion levels of the H2A and H4 genes and WSSV load,
a Pearson correlation was calculated using a simple
linear regression model in SigmaPlot 11.0 (n = 7
replicates).

3.  RESULTS AND DISCUSSION

As shown in Fig. 1, the viral kinetics showed an ini-
tial peak (0 hpi) (~150 WSSV copies ng−1 of DNA),
which is associated with the injection of the inocu-
lum. Then, as expected, the viral load gradually de -
creased from 3 to 24 hpi. These results are in agree-
ment with previous studies (García-Orozco et al.
2012, Gao et al. 2014, Li et al. 2015), and this drastic
decrease may be due to the host immune response.
Thereafter, the viral load began to increase and
entered into an exponential phase until 72 hpi, when
the number of viral copies reached a peak.

Fig. 2 provides an overview of the expression levels
of the H2A and H4 genes in gills of the shrimp Pe-
naeus vannamei during the WSSV infection experi-
ment. At 0 hpi, no significant differences were ob -
served in the expression levels of H2A and H4 when
compared to those of uninfected specimens. It is gen-
erally accepted that gene expression of histones is
regulated by a synchronized action of transcriptional
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Primer                        Target                Sequence (5’−3’) Product                  Reference
                                                              size (bp)

LvH2A F2             Histone H2A          ATG CTG AAC GTG TAG GTG CT 115                      GenBank acc. 
LvH2A R2                                             CGG GTC TTC TTG TTG TCA CG                         no. AY576483

LvH4 F                   Histone H4            AGG TGT TGC GTG ATA ACA TCC 112                      GenBank acc. 
LvH4 R                                                  ACA CCA CGG GTT TCT TCG TA                         no. MH311299

VP28-140Fw         WSSV VP28           AGG TGT GGA ACA ACA CAT CAA G 140                      Mendoza-Cano & 
VP28-140Rv                                          TGC CAA CTT CAT CCT CAT CA                         Sánchez-Paz (2013)

qIH-Fw                      PstDV1               TAA GGA AGC CGA CGT AAC ATT G 120                      Encinas-García 
qIH-Rv                                                  CGC ATT TGT TCC ATG AAT CC                         et al. (2015)

Table 1. Oligonucleotide primers used in this study for real-time PCR (qPCR)
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factors, histone chaperones, and chro-
matin-bound proteins (Zunder & Rine
2012), and their expression is strongly
confined to the S-phase of the cell cy-
cle, which is tightly regulated to ensure
genomic stability (Lygerou & Nurse
2000). Thus, the initial expression lev-
els of H2A and H4 in infected shrimp
may be controlled by transcription re-
pressors, histone chaperones, chro-
matin-bound proteins, or acetylation
levels (Mei et al. 2017) to maintain as
much as possible normal cell cycle pro-
gression, genome stability, and gene
transcription.

It is worth mentioning that the steady-
state levels of both genes were regu-
lated coordinately and changed more
abruptly after 12 hpi. In both cases
(Fig. 2), maximum levels of expression
were achieved at 12 hpi, after which the
expression de clined sharply, reaching
its lowest levels at 72 hpi, which coin-
cides with the WSSV replication dy-
namics in Fig. 1. No significant changes
were observed in H2A expression levels
in the uninfected controls. The amount
of H2A mRNA gradually increased to
reach maximum levels at 12 hpi, and
subsequently, the number of transcripts
of this gene dropped abruptly until
72 hpi (Fig. 2A). Similarly, significant
changes were detected in the abun-
dance of H4 mRNA transcripts at 48 and
72 hpi, when H4 mRNA expression was
drastically reduced; however, the tran-
scription levels of this gene remained
fairly constant during the first 12 hpi.
No significant changes were ob served
in H4 expression levels in uninfected
controls (Fig. 2B).
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Fig. 1. Kinetics of white spot syndrome virus (WSSV) replication in whiteleg
shrimp Penaeus vannamei. The dynamics of viral replication (copy numbers)
during the course of infection was quantified by real-time PCR of viral DNA in
a set of 2 pleopods from each shrimp (using the methodology of Mendoza-
Cano & Sánchez-Paz 2013). Samples were analyzed individually in triplicate
on the same organisms in which histone mRNAs were measured. hpi: hours 

post inoculation

Fig. 2. Absolute expression of the Penaeus
vannamei encoding genes for histones (A)
H2A and (B) H4 in gills following white spot
syndrome virus (WSSV) infection. Black
bars: uninfected shrimp (control treatment);
grey bars: WSSV-infected shrimp. Samples
(n = 6 per treatment group per timepoint)
were analyzed individually in triplicate.
 Error bars: SD. Different letters above the
bars: significant differences between con-
trol and infected shrimp at each timepoint

(p < 0.05). hpi: hours post inoculation
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The expression profile of the H2A and H4 genes
coincides with the WSSV replication kinetics. Re -
markably, the expression of H2A gave a medium
negative Pearson correlation value (r = −0.566, p =
0.185), while the expression of H4 gave a very high
negative correlation (r = −0.726, p = 0.0648). At
12 hpi, when the WSSV load was almost unde-
tectable (due to the immune response of the shrimp),
the abundance of H2A and H4 mRNAs were at max-
imal levels. However, as the WSSV infection pro-
gressed to its maximum levels at 72 hpi, the number
of transcripts of these genes decreased markedly.
Arockiaraj et al. (2013) found that mRNA levels of a
gene encoding a histone of the freshwater prawn
Macrobrachium rosenbergii (MrHis), highly similar
to H2A, increased almost 19-fold at 12 h after the
specimens were challenged with WSSV, and subse-
quently decreased until 48 hpi. Our results revealed
that the H2A expression in P. vannamei infected with
WSSV showed a similar trend to that reported by
Arockiaraj et al. (2013), but less conspicuous. The
observed differences between our findings and those
of Arockiaraj et al. (2013) may be a species-specific
response to the virus. The increase in H2A expres-
sion at 12 hpi observed in the current study may be a
pivotal process to inhibit viral replication. New evi-
dence has highlighted the participation of histones in
the host’s immune response (Parseghian & Luhrs
2006, Sathyan et al. 2012). Several studies have
demonstrated that fragments of the histone H2A pos-
sess antimicrobial activity (Kim et al. 1996, Park et al.
1998, Arockiaraj et al. 2013), and that a peptide
derived from the N-terminus of the H2A histone of P.
vannamei possesses antimicrobial activity (Patat et
al. 2004), and Sruthy et al. (2019) demonstrated the
anti microbial activity of an H2A-derived histone
peptide (Fi-Histin) from the Indian white shrimp Fen-
neropenaeus indicus against Gram-negative (Vibrio
vulnificus and Pseudomonas aeruginosa) and Gram-
positive bacteria (Staphylococcus aureus). Thus, the
overexpression of H2A to generate peptides with
antiviral activity may represent a novel mechanism
to block viral replication. However, this possibility
still remains speculative, and further research is
needed to elucidate a possible role of the histone-
derived peptides against WSSV.

Histones are proteins that condense eukaryotic
nuclear DNA into chromatin, and their structure and
regulation are highly important in transcription and
DNA replication (Wolffe & Hayes 1999). Histone H2A
is responsible for the packaging and compactation of
DNA in the nucleus. In addition, H2A displays a high
diversity of variants that are involved in apoptosis,

DNA repair, gene regulation, and genome integrity
(González-Romero et al. 2012). Histone H4, a nucleo-
some subunit in eukaryotes, when acetylated, plays a
crucial role in chromatin decompaction during DNA
replication (Ruan et al. 2015). Thus, it seems plausi-
ble that WSSV down-regulates the expression of the
histones H2A and H4, both involved in regulatory
switches within the transcriptome, in order to reduce
the number of relevant host transcripts, to evade the
host’s immune system. A similar strategy to sequester
the host’s immune system by controlling its gene
expression through interfering with chromatin func-
tionality has been re ported in the influenza A virus
(Marazzi et al. 2012). Hepat & Kim (2011) reported
that transient expression of the viral histone H4, a
histone mimic encoded by the Cotesia plutellae bra-
covirus (CpBV), in late-instar larvae of the red flour
beetle Tribolium castaneum affected the normal epi-
genetic control of the expression of 12 genes encod-
ing antimicrobial peptides, suppressing the host’s
immune response. In a subsequent study, Hepat et al.
(2013) injected an expression vector containing the
open reading frame encoding for an H4 viral histone
of CpBV (CpBV-H4) into the hemocoel of late-instar
larvae of T. castaneum, and total RNAs were ex -
tracted and read through a next-generation sequen-
cing technique. It was found that the viral histone H4
alters host gene expression by interacting with the
host nucleosome, and inhibiting its immune re -
sponse. Finally, Avgousti et al. (2016) reported that
protein VII of adenoviruses, which resembles cellular
histones, forms complexes with nucleosomes and
interferes with DNA accessibility, a mechanism to
blunt the host immune response.

Zhu et al. (2018) found that the expression of the
histones H2A, H2B, H3, and H4 in hemocytes of
the Chinese shrimp F. chinensis was down-regu-
lated upon WSSV infection. This is in agreement
with our findings of the reduction of the expression
of the histone H2A of shrimp. Feng et al. (2014)
found an upregulation of H4 in hemocytes of F.
chinensis infected with WSSV from 0 to 6 hpi,
which was followed by a sharp decline at 12 and
18 hpi. That was a similar transcriptional profile of
H4 to that observed in the current study. Thus, this
may be a strategy of WSSV to suppress the syn-
thesis of proteins involved in the immune response.
However, further studies are still required to cla -
rify this point.

Another reasonable explanation for the down-reg-
ulation of H2A and H4 may be related to cell death
induced by the WSSV protein ICP11. As we men-
tioned above (Section 1), ICP11 is the most highly
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expressed WSSV nonstructural protein. The expres-
sion of ICP11 induces cell death either by a direct
induction of nucleosome disorder or through nucleo-
some destabilization by binding to histones in the
cytoplasm, which prevents its translocation into the
nucleus (Wang et al. 2008). Thus, as viral load in -
creases with disease progression, cell death becomes
common, and the expression of H2A and H4 steeply
declines with time.

The present study reinforces the notion that the
multiple pathogenic effects of WSSV involve viral
products that induce complex alterations in cellular
functions. The down-regulation of the host’s histones
is a highly sophisticated strategy of WSSV to evade
shrimp immunity, thus favoring viral perpetuation.
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