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JOINT LIKELIHOOD FUNCTION BASED ON MULTINOMIAL AND  
NORMAL DISTRIBUTIONS FOR ANALYZING THE PHENOTYPIC GROWTH VARIABILITY  

OF GEODUCK CLAM PANOPEA GLOBOSA

ABSTRACT
In age and growth studies the individual variabil-

ity is recognized as a source of bias, if it is not taken 
into account in the analyses it can lead to overestimates 
or subestimates of the mean length at age of a cohort. 
In this study, a new approach for analyzing individual 
shell length-at-age variability was developed for Pano-
pea globosa using a joint negative log-likelihood where 
both shell length frequency distributions (0.105–7.04 
mm) and shell length–at-age (100–187 mm) data sets 
were combined. Six candidate growth models were ana-
lyzed that included assumptions about the variance for 
each age in the population, and the best growth model 
was selected using a multimodel inference approach. 
Growth modeling including phenotypic growth vari-
ability showed that estimates of t0 were better than those 
computed from conventional growth models. We found 
that the Johnson model was the best candidate growth 
model for fitting both data sets.

INTRODUCTION
A frequent assumption in stock assessment models 

is that individual growth in marine organisms can be 
described adequately through mean growth parameters. 
However, these parameters are usually estimated from 
length-at-age data, and they are highly variable (Sains-
bury 1980). This means that the growth models are fit 
to average trajectories that ignore intrinsic biological 
variability about individual growth. For several marine 
populations is recognized that the length-at-age variabil-
ity decreases with time or age (growth compensation), 
or the inverse pattern, where length-at-age variability 
increases with age (growth depensation) (Pfister and 
Stevens 2002). For effective fisheries management, the 
length structure is biologically useful; and catch-at-
length analysis have been applied to Pacific cod (Gadus 

macrocephalus), longneck croaker (Pseudotolithus typus), and 
round scad (Decapterus russellii) (Sullivan et al. 1990); red 
sea urchin (Strongylocentrotus franciscanus) (Lai and Brad-
bury 1998); red king crab (Paralithodes camtschaticus) and 
tanner crab (Chionoecetes bairdi) (Zheng et al. 1995, 1998); 
jumbo squid (Dosidicus gigas) (Morales-Bojórquez and 
Nevárez-Martínez 2010); and Pacific yellowleg shrimp 
(Farfantepenaeus californiesis) (Morales-Bojórquez et al. 
2013). This is associated to the facility of data collec-
tion, hence the length structure of an exploited popula-
tion can be informative of biological factors useful for 
stock conservation (e.g. length-at-first maturity, selectiv-
ity, length-at-first capture). 

Several approaches have been used to analyze the 
length-at-age variability based on deterministic and 
stochastic growth models. Sainsbury (1980) analyzed 
the effect of individual variability using the von Berta-
lanffy growth model (VB), concluding that this feature is 
important and can be measured from individual growth 
parameters; if this is not included and considered as a 
source of bias in the estimation of growth parameters, 
then the results will be overestimated, affecting the mean 
length at age of a cohort. Kirkwood (1983) used length 
increments and length-at-age data for parameterizing 
the VB. This study implements a proposal first suggested 
by Sainsbury (1980), where a joint likelihood function 
based on two sources of data could be more informa-
tive in comparison to simply the length-at-age data. The 
methodology in Kirkwood (1983) is possibly the most 
inclusive in following Sainsbury (1980) suggestion, how-
ever he did not analyze the individual variability in VB. 
Parma and Deriso (1990) also analyzed the phenotypic 
variability in growth assuming two hypotheses: 1) sto-
chastic environmental effects are associated with intrin-
sic sources of growth variability; and 2) variability in 
the initial length distribution of young organisms are 
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data (outliers) using average data of age; this procedure 
gives the same weight to all data and a better fit to the 
growth curves. In addition, previous studies of growth 
have assumed two types of residuals commonly known 
as additive error and multiplicative error, which show 
a constant variance or homocedasticity (Wang and Liu 
2006). Both approaches are based on normal and log-
normal probabilistic density distributions and they have 
not been suitable for detecting the impact on growth 
parameters when atypical observations are observed in 
the samples. Chen et al. (2003) proposed three methods 
where the size of the tails of the normal distribution can 
be fitted with respect to the proportion of outliers in 
the data (known as fat tail distributions): 1) the thickness 
of tails is determined by the degrees of freedom using a 
student’s t distribution, 2) the size of tails is increased by 
adding a fixed small value (λ = 0.01) within the nor-
mal distribution function, and 3) mixtures distributions 
where a new parameter is added to represent a propor-
tion of outliers. However, these statistical procedures do 
not estimate length-at-age variability, assuming a con-
stant variance. It is beyond the scope of this study to ana-
lyze the effect of outliers based on fat tail distributions. 
Moreover, this type of statistical procedure is only valid 
if the variance is constant and is influenced by the pro-
portion of data assumed as outliers, this analyses has been 
documented previously for Panopea globosa by Morales-
Bojórquez et al. (2015). In contrast, the hypothesis of 
this study focuses on showing a statistical procedure for 
estimating the variance-at-age when the variance is not 
constant for all ages in the population.

Given this background, studies on age and growth 
of geoduck populations have begun focusing on ana-
lyzing average growth trajectories of Panopea generosa 
based on VB (Hoffman et al. 2000; Bureau et al. 2002; 
Campbell and Ming 2003). However, a new approach 
was recently applied using information theory (mainly 
multimodel inference) whereby candidate growth mod-
els were analyzed based on different individual growth 
properties. However, although better trajectories were 
fitted to the observed shell length-at-age data, these 
described average growth curves (Cruz-Vázquez et al. 
2012; Aragón-Noriega et al. 2015; González-Peláez 
et al. 2015; Hidalgo-de-la-Toba et al. 2015; Zaidman 
and Morsan 2015). Hence, these new efforts in age and 
growth modeling studies were limited since they failed 
to estimate the intrinsic phenotypic variability in growth 
of Panopea species. For P. generosa it has been reported 
that its lifespan may even exceed 150 years (Bureau et al. 
2002); while the longevity reported for several other spe-
cies is close to 50 years (Gribben and Creese 2005; Zaid-
man and Morsan 2015). In this study, a new approach for 
analyzing individual shell length-at-age variability was 
developed for Panopea globosa using a joint negative log-

caused by the individuals having intrinsically different 
growth potentials. This approach was applied to ana-
lyze the effects of the variability on expected yield and 
reproductive potential of a cohort. Specific individual 
variability in growth parameters for the VB were mod-
eled based on numerical simulation, thus the phenotypic 
variability in growth was assessed not from empirical 
data but from expected parameters distribution (maxi-
mum asymptotic length and growth coefficient) (Pilling 
et al. 2002). Recently, Restrepo et al. (2010) analyzed 
length frequency and shell length-at-age data using the 
VB and assumed that the residuals were normally distrib-
uted with the variance increasing with the length; this 
approach allowed for estimating the variance for each 
age observed in the population.

The stochastic growth models are able to show indi-
vidual-to-individual changes, their impacts on growth 
parameters, and provide estimates of theoretical tra-
jectories from length-at-age data, a result which is not 
commonly represented by deterministic growth models. 
According to Troynikov et al. (1998) the mean growth 
rate in early stages (e.g., larvae, juveniles) increases lin-
early or exponentially, however when the organisms are 
recruits or mature the growth rate decreases, present-
ing a growth pattern with dual phases. The stochastic 
methods applied to individual variability in growth stud-
ies have been mainly based on tag-recapture data and 
Fabens method (von Bertalanffy growth model). Wang 
et al. (1995) proposed an unconditional likelihood func-
tion for analyzing the variability in growth of Penaeus 
semisulcatus from changes in asymptotic length and age-
at-tagging, this procedure allows them to obtain unbi-
ased estimation of individual growth, considering that 
the mean growth curve is increasing as a function of 
time. Troynikov and Gorfine (1998) explicitly showed a 
stochastic parameterization applied to Gompertz growth 
model assuming gamma, log normal and Weibull prob-
ability density functions for k and L∞ parameters; an 
application of this approach was developed for Heterodon-
tus portusjacksoni where simultaneously the length-at-age 
heterogeneity and random variation in growth coeffi-
cient for the von Bertalanffy growth model were ana-
lyzed, although the random variation can be included in 
more of its parameters (Tovar-Ávila et al. 2009). Laslett 
et al. (2002) proposed a modification to the von Berta-
lanffy growth model which included a logistic growth 
rate, expressing the new model with five parameters. This 
model was able to estimate two growth rates (juveniles 
and adults) representing individual changes in asymptotic 
length and variability in time of tagging.

Another approach to analyze phenotypic variabil-
ity in growth was focused on evaluating the impact of 
outliers commonly observed in the length-at-age data. 
Thus, Francis (1988) proposed eliminating the atypical 
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pertz assumes an exponential decrease of the growth 
rate with size (González-Peláez et al. 2015); (3) Johnson 
describes a sigmoid growth with a very strong asymme-
try and inflexion point very low close to 0 (Hidalgo-de-
la-Toba et al. 2015); (4) Logistic considers an alternative 
sigmoidal curve (Cruz-Vázquez et al. 2012); (5) the 
generalized von Bertalanffy growth model (GVB) has 
a similar interpretation to the VB, however an addi-
tional parameter provide greater flexibility for fitting the 
curve (González-Peláez et al. 2015); and (6) the Richards 
model which describes several growth forms accord-
ing to different values of δ1, the inflection point can be 
located in any position of the curve (Zaidman and Mor-
san 2015). Thus, the estimated shell length-at-age ( l̂ ) was 
computed from the following mathematical functions:

l̂  = L∞ [1 – exp–k(t – t0)]	 (1)

l̂  = L∞ exp–exp[–k(t – t0)]	 (2)

	 1
l̂  = L∞ exp– [	k	(t – t0)]	 (3)

l̂  = L∞ [1 + exp–k(t – t0)]–1
	 (4)

l̂  = L∞ [1 – exp–k(t – t0)]δ1
	 (5)

	 1
	 	

l̂  = L∞ [1 + 	α	 exp–k(t – t0)]–δ1
	 (6)	

The growth parameters (θi) for the six candidate 
growth models are: L∞ is average maximum shell length 
reached by older individuals; for the von Bertalanffy 
growth model k represents the growth coefficient; in the 
generalized von Bertalanffy and Richards growth mod-
els, k has similar interpretation; for Gompertz growth 
model the parameter k is the rate of exponential decrease 
of the relative growth rate with age; in the Logistic 
growth model, k is the relative growth rate parameter; 
for the Johnson growth model k is the rate at which the 
asymptotic shell length is reached (Katsanevakis 2006; 
González-Peláez et al. 2015); t0 parameter is the theo-
retical age of the fish at zero size under the assumption 
that the von Bertalanffy (1938) growth curve describes 
the growth accurately right down to zero length. Even 
if this unlikely assumption is true, fish will be born with 
some positive length, so t0 will usually be negative. The 
definition changes according to candidate growth mod-
els, e.g., the Logistic, Johnson, and Gompertz models 
correspond to the inflection point for each curve; for 
generalized von Bertalanffy growth model t0 has simi-
lar interpretation as in the von Bertalanffy assuming the 
equation to be valid at all ages; a similar assumption is 
applied to the Richards growth model (see Katsanevakis 
2006; Magnifico 2007 for details). According to Cailliet 

likelihood combining both shell length frequency dis-
tributions and shell length-at-age data sets.

MATERIAL AND METHODS

Biological data
For illustrative purposes, two sources of data were 

used to estimate a combined growth curve for P. glo-
bosa from the southwestern Baja California Peninsula. 
Shell length-at-age data for individuals from 3 to 47 
years were obtained from González-Peláez et al. (2015). 
Specific details about sample preparation (shells), read-
ing and accuracy verification, age validation, and results 
of ageing error were reported by González-Peláez et al. 
(2015). While that shell length frequency data at early 
growth stages (0.105–7.04 mm, n = 867) were obtained 
under rearing experimental conditions from fertiliza-
tion (in vitro) to 68th day at 19˚C. The measurements 
of shell length (mm) of the larval and juvenile growth 
stages were selected assuming a simple random sampling. 
Thus, from the 34th day a sample of 72 organisms were 
sampled weekly during the following 6 weeks. We mea-
sured the shell lengths of these individuals by taking dig-
ital images and processing them with Sigma Scan Pro, 
ver. 5.0 (Systat Software, Richmond, CA, USA). The lar-
vae were cultured at 1 ind/ml and the food supply given 
was Isochrysis galbana, while the juveniles were isolated 
individually and fed with mixture of microalgae Isochrysis 
galbana (50%) and Chaetoceros sp. (50 %). For both devel-
opmental stages the fed ration was between 30,000 and 
45,000 cells/ml (unpublished data). This study analyzed 
shell length-at-age and shell length frequency distri-
bution data of the whole ontogenic cycle of the geo-
duck clam Panopea globosa (trocophora larvae, pediveliger 
larvae, dissoconch and juvenile stages, including adult 
stages) in order to describe its phenotypic growth vari-
ability. Consequently, both data sets were integrated to 
cover the widest shell length (SL) range possible, includ-
ing ages and shell length for early stages less than 1 year, 
and individuals from 3 to 47 years, this age range rep-
resents a shell length from 0.105 to 187 mm SL. This 
approach was identified as more comprehensive since it 
provided a complete age range for estimating multiple 
parameters for each candidate growth model evaluated; 
this procedure inclusiveness was suitable for jointly ana-
lyzing two data sets. 

Analysis of shell length-at-age data 
The individual growth of P. globosa was analyzed using 

the following six candidate growth models: (1) von Ber-
talanffy which exhibits an initial fast growth phase, grad-
ually decreasing to attain the asymptotic length, it has 
no inflexion point for t > 0 (Breen et al. 1991; Hoff-
man et al. 2000; Aragón-Noriega et al. 2015); (2) Gom-
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analyzes the intrinsic variability of shell length-at-age 
data for different candidate growth models, assuming that 
the residuals are normally distributed with the variance 
increasing as a function of the age (Restrepo et al. 2010). 
The negative log-likelihood function (L 1) describing 
the best fit between observed (li) and estimated (l̂ ) shell 
length-at-age data is expressed as follows:

		  ln(2πσi
2)		  (li – l̂ i)

2

L1 = ∑ i	 [	 	 +	 	]	 (13)
		  2		  2πσi

2

Analysis of shell length frequency data
Shell length data for early growth stages (0.105 to 

7.04 mm) of P. globosa were analyzed using frequency 
histograms. Thus, the shell length frequency distribu-
tion for each age group (a) was estimated using a normal 
probabilistic density function (Zar 1999):

	
n			   La,ai

	
1		  1f̂ (La)=∑		 [	∫		 	exp [–	 	(La–µ̂a)2]dLai]λai		 a=1		 	 –∞	    	 	 2σa

2
	 	 	 	 	 √2πσa

2

   	 (14)

where (La) is the observed shell length, (µ̂a) is the aver-
age shell length for each age group a, λai represents a 
parameter of fit for the observed frequency data within 
each age group a, i represents the sequential number of 
modal values estimated, and σa

2 is the variance for each 
age group a. The estimation of µ̂a and σa

2 was done for 
each group a following the statistical criteria as described 
in Table 1 (equations 15–26). The parameters associated 
to equations 15–26 are: Υ represents the larger shell 
length for younger individuals; ω growth coefficient for 
younger individuals; σΥ

2 is the variance for larger indi-
viduals observed in the early growth stages. The differ-
ences between the observed and expected shell length 
frequency distributions were fitted assuming a multi
nomial distribution expressed as negative log-likelihood 
function defined as L2:

et al. (2006) the t0 parameter is largely artificial, in so far 
as it defines the age at which the organism would be of 
zero length if it grew throughout its life with the same 
pattern of growth as in the post-larval phase; α and δ1 are 
dimensionless parameters, both providing greater flex-
ibility for modeling the data.

According to Restrepo et al. (2010) the estimated 
variance for each age observed (σi

2) in the VB (σi
2
VB) 

can be expressed as: 

σi
2
VB = σL

2
∞VB[1 – exp–k (t – t0)]2	 (7)

Thus, different σi
2 were estimated for the rest of the can-

didate growth models based on the following mathemat-
ical implementations (Luquin-Covarrubias et al. 2016):

Gompertz

σi
2
GM = σL

2
∞GM [exp – exp(–k (t – t0)]2	 (8)

Johnson
	 1
σi

2
JN = σL

2
∞ JN[exp – (	k	 (t – t0))]2	 (9)

Logistic 

σi
2
LG = σL

2
∞LG[(1 + exp–k (t – t0)–1]2

	 (10)

GVB                  

σi
2
GVB = σL

2
∞GVB[(1 – exp–k (t – t0))δ1]2

	 (11)

Richards
	 1σi

2
RC = σL

2
∞RC [(1 + 	α	 exp–k (t – t0))–δ1]

2
	 (12)

where σL
2
∞
 is the variance for older individuals, and the 

abbreviations associated with subindices i and L∞ identify 
the candidate growth model. This statistical procedure 

TABLE 1
Mathematical function of expected shell length (μ̂a), and variance σa

2 for each modal group a  
according to shell length frequency distributions for early stages.

Model	 Function μ̂a	 Function σa
2	 Source	 Eq.

VB	 μ̂aVB = Υ [1 – exp–ω(a – t0)]	 σ2
a VB = σ2

ΥVB
 [1 – exp–ω(a – t0)]2	 1,2	 (15, 16)

				  
GM	 μ̂aGM = Υ exp–exp[–ω(a – t0)]	 σ2

a GM = σ2
ΥGM

 [exp–exp(–ω(a – t0))]2	 This study	 (17, 18)
				  
JN	 	 1

μ̂aJN = Υ exp –[	—	(a – t0)]
	

ω 	 	 1
σ2

a JN = σ2
ΥJN

 [exp – [	—	(a – t0)]2

	
ω 	 This study	 (19, 20)

				  
LG	 μ̂aLG = Υ [1 + exp–ω (a – t0)]–1	 σ2

a LG = σ2
ΥLG

 [(1 + exp–ω(a – t0))–1]2
	 This study	 (21, 22)

				  
GVB	 μ̂aGVB = Υ [1 – exp–ω(a – t0)]δ1	 σ2

a GVB = σ2
ΥGVB

 [(1 – exp–ω(a – t0))δ1]2
	 This study	 (23, 24)

				  
RC	 	 1μ̂aRC = Υ [1 +	–	 exp–ω(a – t0)]–δ1

	 α 	
	 1σ2

a RC = σ2
ΥRC

 [(1 +	–	 exp–ω(a – t0))–δ]2
	 α 	 This study	 (25, 26)

The subindices are defined as: VB = von Bertalanffy, GM = Gompertz, JN = Johnson, LG = Logistic, GVB = generalized von Bertalanffy, RC = Richards.1) von Bertalanffy (1938), 
2) Restrepo et al. (2010).
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dence intervals either individually or jointly. The esti-
mator assumes a χ2 distribution with n = 1 degrees 
of freedom (df ), when the estimation is individual, 
thus all values smaller or equal to 3.84 are accepted 
(Morales-Bojórquez and Nevárez-Martínez 2005); 
this approach was solved for the following parameters: 
Υ, ω, σΥ

2, α, δ1, λa1,λa2, t0, σL
2
∞. When the estimation 

is joint and there is any type of correlation (covari-
ance) between parameters, the CI become wider, in 
this case the likelihood-contour method is preferred 
(Cerdenares-Ladrón-de-Guevara et al. 2011), this was 
applied to L∞ and k parameters. If there was no corre-
lation between parameters then the confidence inter-
vals would be unbiased (Zepeda-Benitez et al. 2014a). 
Thus, a χ2 distribution with n = 2 degrees of freedom 
(df ) was applied, such that values equal or less than 5.99 
are accepted within CI (Zar 1999). The χ2 estimator is 
described as follows by Haddon (2001):

CI = 2[LJ – In L(θi)] ≤ χ2
df,1– α	 (29)

where LJ is the joint negative log-likelihood of the most 
likely value of θi; –ln L(θi) is the negative log-likelihood 
based on hypotheses about the value of θi (profile or 
contour), and χ2

1–α is the value of χ2 distribution with 
a confidence level 1–α = 0.05 and df = 1 (profile), or 
2 (contour) (Haddon 2001). 

Growth model selection
The fit of the six candidate growth models was 

compared using AICc bias corrected for small samples, 
this condition is defined if n/θi < 40 (Zepeda-Benitez 
et al. 2014b). 

	 2 × θi (θi + 1)
AICc = 2 × LJ + 2 × θi +	 	   (30)
	 n  –  θi –  1

where LJ is the joint negative log-likelihood function 
(eq. 28), θi is the number of estimated parameters for 
each growth model, and n is the number of observed 
data (shell length-at-age and shell length frequency data). 
The model with the smallest AIC value is considered the 
best fit to the data (Burnham and Anderson 2002). Dif-
ferences between the AICc for each growth model (i) 
were calculated as Δi = AICc,i  – AICc,min  according to 
Burnham and Anderson (2002). The candidate growth 
models with Δi > 10 do not have statistical support and 
cannot be considered; with 4 < Δi < 7 have partial sta-
tistical support, and Δi < 2 have high statistical support.

We estimated the plausibility of each candidate 
growth model defined as Akaike weight (wi) (Katsane-
vakis 2006): 

	 exp(–0.5 Δi)wi = 	 	 (31)
	 ∑6

i=1 exp(–0.5 Δi)

	 f̂ (La)		  nL2 = –ln L( f|θi)=∑a=1  f(La|ln)[	 	] – ∑i=1( fa– f̂a)
2

	 ∑ f̂ (La)

(27)

where f(La) is the observed shell length frequency and 
f̂ (La) is the predicted shell length frequency within the 
average shell length group La. A penalization function 
(eq. 27) was included in the negative log-likelihood 
for estimating the frequency of individuals for each 
age group, ( fa) is shell length frequency distribution 
observed in the sample, and ( f̂a) represents the num-
ber of predicted observations. The age groups were 
identified using Akaike information criterion through: 
AIC = 2L2 + 2p, where p is the parameter number for 
each model fitted to shell length frequency distribu-
tion (Haddon 2001). The lowest value AIC was used 
for determining if the statistic fit can be improved by 
adding a new mode (Montgomery et al. 2010). This 
allows for ensuring that the age groups are close to t0 
and that an accurate estimation of all growth param-
eters is attained. 

Parameters estimation
The candidate growth models were fitted to both data 

sets, minimizing a joint negative log-likelihood function 
(LJ) through Newton algorithm contained in the Visual 
Basic Applications™ (Neter et al. 1996):

LJ = L1 + L2  	 (28)

To achieve a more accurate estimate of the parame-
ters, the minimizing was done by phases, the parameters 
less sensitive were simultaneously estimated in the first 
group considering the statistical propriety of each model 
(Υ, ω, σΥ

2, α, δ1, λa1 and λa2), while the rest retained the 
values initially assigned. Once the objective function was 
minimized for a particular phase, the other parameters 
were added and evaluated gradually (L∞, k, t0, σL

2
∞), thus 

this was carried out in order to complete the total opti-
mization of LJ (Legault and Restrepo 1998).

Confidence intervals
The statistical χ2 used in our study was applied as 

a non-parametric estimator for estimating confidence 
intervals (α = 0.05). The rationale is based on the pos-
sibilities that the confidence regions can be asymmetric 
rather than symmetrical ellipses as assumed by asymp-
totic methods, and if this occurs the likelihood-profile 
or contour method is preferred because it is compu-
tationally more efficient than bootstrapping (Haddon 
2001; Morales-Bojórquez and Nevárez-Martínez 2010). 
We estimated the confidence intervals (CI) for the θi 
parameters using a likelihood-profile method (Hilborn 
and Mangel 1997), the advantage of this approach is 
that it provides an estimate of the asymmetric confi-
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SE(L∞) = ∑6
i=1 wi [var( ̂L∞/gi

 ) + ( ̂L∞ – L∞ )2]1/2
	 (33)

where var Li/gi
 is the estimate variance of observed data 

with respect to each candidate growth model gi .

RESULTS
The multinomial distribution fitted to shell length fre-

quency data for early growth stages of P. globosa allowed 
for estimating four age groups. The AIC estimated from 
the hypotheses of one age group until five age groups 
are shown in Table 2. The mean value of the age group 
1 was 0.22 mm, (SD = 0.07, λa1 = 18.49), this age group 
was very well identified for the multinomial function; 
the mean value for the age group 2 was 1.15 mm, (SD = 
0.14, λa2 = 1.50), while the third and fourth age groups 
showed mean values of 3.78 mm (SD = 1.18, λa3 = 
10.46), and 2.11 mm (SD = 0.51, λa4 = 9.44). Compar-
atively, the fifth age group showed mean value of 4.70 
mm (SD = 17.27, λa5 = 2.43), however the presence of 
fifth age group increased the AIC value, consequently 
the addition of this last age group did not improve the 
statistical fit of the multinomial function (fig. 1).

This preliminary estimation was useful to define the 
initial number of age groups to be included when shell 
length-at-age data were added. Thus, the parameters 
for both datasets were jointly optimized to each can-
didate growth model (table 3). The parameters esti-
mated showed that for σL

2
∞ and σ2

Υ the VB (77.73 and 
25.46, respectively), and Logistic model (72.47 and 
45.40, respectively) had the higher values (fig. 2). The 
effect of σL

2
∞ and σ2

Υ within the VB and Logistic model 
were influencing the estimates, where the variance for 
each age i was highest. The rest of the candidate growth 
models showed similar trends in σi

2 estimates with lower 
values (fig. 3). The ontogenic growth trajectory from 
the two sources of data to geoduck clam are shown 
in Figure 4. Thus, the datasets were informative of the 
different growth parameters with respect to early or 
adult stages.

Following the multimodel inference approach, the 
model-averaged asymptotic length L∞ was estimated as 
a weighted average using all six models, with the pre-
diction of each model weighted by wi. Thus, the model-
averaged asymptotic shell length is:

L∞ = ∑6
i=1 wi L̂∞ 	 (32)

The unconditional standard error of L∞ was estimated 
as (Katsanevakis 2006): 

TABLE 2
Number of modal values selected from AIC using the  
shell length frequency distributions for early stages.

		  Negative 
	 Parameters	 log-likelihood function	 AIC

Mode 1	   3	 3628.84	 7263.69
Mode 2	   6	 3186.15	 6384.31
Mode 3	   9	 3163.44	 6344.89
Mode 4	 12	 3156.55	 6337.10
Mode 5	 15	 3184.68	 6399.37

	
  
	
  
Figure 1.  

	
  

Figure 1.  Shell length frequency distributions for each age group (a) esti-
mated for early stages.

	
  
 

Figure 2.  

	
  

 
 
 

 
 
Figure 3. 
 
 
 
 
 
 

Figure 2.  Comparison of the variance σ2
L∞ for older (discontinuous line) and 

σ2
Υ younger individuals (continuous line) estimated for each candidate growth 

model analyzed. 

Figure 3.  Trajectories of the variance for each age i according each candi-
date growth model analyzed.
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respectively. The general pattern of variability in this 
parameter shows that it was commonly estimated as a 
value less than k = 0.27. The parameter associated with 
t0 presented the minimum value for VB (t0 = 0.027), 
and the maximum value for the Logistic growth model 
(t0 = 0.23) (table 3). The variation of ω for younger 
individuals varied from 0.02 (GVB) to 87.47 (Richards 
growth model), and the larger shell length estimated for 
younger individuals (Υ)ranged between 0.06 and 16.18 
for the Johnson and the Logistic growth models, respec-
tively (table 3).

The final parameterization including shell length fre-
quency distributions and shell length-at-age data showed 
convergence in the objective function when only two 
age groups were assessed, the addition of the third and 
fourth age group caused lack in convergence. This means 
that the interactions between both datasets statistically 
discriminated the useful of the third and fourth age 
group, which were used as seed values in the joint neg-
ative log-likelihood function. Thus, new age groups in 
the shell length frequency distributions were restimated 
to each candidate growth model, the first age group was 
0.20 mm (σa

2  = 7.6x10-4), and the second was 2.91 mm 

The variability estimated in growth parameters 
showed that average maximum shell length (L∞) varied 
from 164.69 mm (VB) to 179.48 mm (Johnson model), 
for the rest of the growth models this parameter was 
less than 169.82 mm. The k parameter changed between 
k = 0.15 and k = 0.55 for GVB and Johnson model, 

TABLE 3
Parameters and confidence intervals (in parenthesis) estimated from joint negative log-likelihood  
profile or contour (P < 0.05) for different growth functions. The sample size for early stages was  

867 individuals, and average shell length-at-age data were 24 observations.

Parameter	 von Bertalanffy	 Gompertz	 Johnson	 Logistic	  GVB	 Richards

Υ	 12.11	 0.36	 0.06	 16.18	 7.23	 0.29
	 (11.40–12.80)	 (0.36–0.38)	 (0.06–0.07)	 (15.70–16.80)	 (7.04–7.46)	 (0.28–0.30)
						    
L∞	 164.69 	 167.78	 179.48	 168.53	 169.82	 167.84
	 (159.80–170.00)	 (163.50–173.50)	  (175.00–182.50)	  (161.80–175.80)	 (164.20–176.20)	 (162.55–173.60)
						    
ω	 0.27	 30.41	 18.66	 32.25	 0.02	 87.47
	 (0.26–0.28)	 (29.50–31.50)	 (18.19–19.09)	 (32.04–32.46)	 (0.02–0.03)	 (86.00–89.00)
						    
k	 0.27 	 0.21	 0.55	 0.20	 0.15	 0.21
	 (0.23–0.33)	  (0.18–0.25)	 (0.52–0.55)	 (0.15–0.26)	  (0.13–0.19)	 (0.18–0.26)
						    
t0	 0.027 	 0.067	 0.069	 0.23	 0.0322	 0.04
	 (0.0263–.0267)	 (0.0671–0.0678)	  (0.069–0.070)	  (0.238–0.239)	  (0.0321–0.0322)	 (0.0446–0.0449)
						    
σ2

Υ	 25.46 	 0.02	 0.0008	 45.40	 9.06	 0.014
	 (24.46–26.46)	 (0.022–0.024)	  (0.00076–0.00084)	 (43.19–47.38)	 (8.57–9.48)	 (0.014–0.015)
						    
σ2

L∞	 77.73 	 63.65	 71.55	 72.47	 63.00	 63.74
	 (48.00–144.00)	  (40.00–118.00)	 (48.00–132.00)	 (49.00–133.00)	 (38.30–111.50)	 (38.60–113.00)
						    
δ1					     0.533 	 14.31
					     (0.530–0.535)	  (14.15–14.46)
						    
α						      14.11 
						      (13.90–14.32)
						    
λa1	 1.84	 1.84	 1.84	 1.84	 1.84	 1.84
	 (1.83–1.84)	 (1.83–1.84)	 (1.83–1.84)	 (1.83–1.84)	 (1.83–1.84)	  (1.83–1.84)
						    
λa2	 2.17	 2.17	 2.17	 2.17	 2.17	 2.17
	 (2.17–2.18)	 (2.17–2.18)	  (2.17–2.18)	  (2.17–2.18)	 (2.1–2.18)	  (2.17–2.18)

	
  
 

Figure 4.  

	
  

Figure 4.  Candidate growth models fitted to shell length-at-age and shell 
length frequency data of Panopea globosa. Points represent shell length-at-
age data observed.
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composition, and this is commonly observed in the vari-
ability of increments of length-at-age. We found that the 
age composition of the Panopea globosa is informative 
about L∞ and k parameters; however, t0 parameter esti-
mated from average shell length-at-age growth curves 
may be over- or underestimated. Thus, the estimation 
of L∞ and k for each candidate growth model using this 
joint negative log-likelihood function showed similar 
values to those reported by González-Peláez et al. (2015), 
where they found values between L∞ = 164.6 mm SL 
(Richards) and L∞ = 181.1 mm SL (Johnson), and the 
growth coefficient estimates varied between k = 0.14 
(GVB) and k = 0.49 (Johnson). In general terms, the k 
parameter in the models used is a measure of the time 
required for specified growth increments to take place, 
however its comparison is not possible because the path 
or trajectory taken by the growth process in each model 
(Brisbin et al. 1987). Different studies have shown high 
variations for estimates of t0; this lack in accuracy about 
t0 has commonly been reported in different species of 
the genus Panopea. For P. abbreviata (Argentina), P. generosa 
(Canada), and P. zelandica (New Zealand) negative val-
ues were observed when VB was used (Breen et al. 1991; 
Campbell and Ming 2003; Morsan and Ciocco 2004; 
Gribben and Creese 2005; Morsan et al. 2010). In con-
trast, for P. generosa distributed in United States waters, 
estimates for t0 parameter had positive values (Hoffman 
et al. 2000) (table 5). 

For Panopea species the formation of the shell begins 
approximately 48 hours after fertilization, and from 1.5 
mm SL they are juveniles (Goodwin and Pease 1989), 
therefore negative and extremely high values of t0 do 
not provide useful information about this parameter in 
its early growth stages. Recently, the multimodel infer-
ence approach has been applied to age and growth mod-
eling of Panopea spp.; however, this statistical procedure 
did not yield better estimates of t0, either values highly 
skewed were also computed for several stocks (table 6). 
Our study described successfully estimates of t0 for six 
growth models improved the growth curves at the ori-
gin (age 0); this was supported by the inclusion of shell 
length frequency distribution of early stages associated 
with the joint negative log-likelihood function. These 
new features must be adopted in growth modeling, since 
these allow for increasing the accuracy for t0 estimates, 
thus improving its biological interpretation. For the t0 
parameter, if a lack of convergence is observed during 
the optimization process to estimate this parameter, then 
the final estimation of t0 can vary its order of magnitude 
such as was reported for P. abbreviata (–46.96, –35.76, 
–31.87; 133.06, 57.76); and P. globosa (–2.99, –1.85, 
–1.31) (table 6). Pardo et al. (2013) suggested several 
alternatives for better estimates of t0; the first is to mod-
ify VB using a fixed value of average length-at-age zero 

(σa
2  = 0.14). Specific details on the λai estimates and 

confidence intervals are shown in Table 3. 

Model selection
According to AICc estimates, the best fit to the 

shell length frequency and shell length-at-age data of 
P. globosa was described by Johnson growth model (AICc 
= 6612.02, Δi = 0.00, wi = 0.47). A second function 
that showed statistical support was the Gompertz growth 
model (AICc = 6612.44, Δi = 0.41, wi = 0.38). Despite 
the Logistic, GVB, and von Bertalanffy models vary-
ing within 4 < Δi < 7 showing partial statistical sup-
port, these functions had Akaike weight less than 0.08. 
Finally, the Richards growth model had no statistical 
support fitting both data sets (table 4). In this study, the 
best candidate growth models were the sigmoid func-
tions (also known as curve S-shaped). Comparatively, 
the asymptotic curves crossing the t-axis (age) and with-
out inflection point, as well as generalized growth mod-
els showed less statistical performance expressed in the 
AICc estimates. Given that five candidate growth models 
had Δi < 7, the model-averaged asymptotic length was 
estimated as 173.38 mm (CI = 154.71-192.05 mm P < 
0.05; SE(L∞) = 9.52 mm.

DISCUSSION
This study was based on the hypothesis of depensa-

tory growth applied to Panopea globosa, previous studies 
ignored the effect of the individual variability commonly 
observed in age-at-shell length data for geoduck in the 
Mexican Pacific. Given that the asymptotic growth pat-
tern in geoduck is very well known, we incorporated the 
individual variability in several deterministic asymptotic 
growth models. The new integrated shell length-at-age 
and shell length frequency distribution growth model 
has improved assumptions about geoduck clam individ-
ual growth compared to conventional growth models. 
In this study, individual variability in geoduck growth 
was explicitly included; this allows a better parameteriza-
tion of the candidate growth models. Sainsbury (1980) 
explained that many mollusks have high variability in 
their individual growth parameters due to changing age 

TABLE 4
Ranking of the six growth models based on the Akaike 
information criterion (AICc) according to the number  

of parameters for each candidate growth model (θi), Akaike 
difference (Δi), and the Akaike weight (wi).

Model	 θi	 AICc	 Δi	 wi

Johnson	   9	 6612.02	   0.00	 0.47
Gompertz	   9	 6612.44	   0.41	 0.38
Logistic	   9	 6615.35	   3.32	 0.08
GVB	 10	 6617.67	   5.64	 0.02
von Bertalanffy	   9	 6618.11	   6.08	 0.02
Richards	 11	 6625.62	 13.59	 0.00
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We found that the combined growth curves using 
shell length frequency distributions and shell length-at-
age data provided more information about t0 parame-
ter for different growth models. A similar approach was 
discussed by Sainsbury (1980) and Kirkwood (1983), 
and they concluded that a joint likelihood function 
applied to both data sets provided a better description 
of growth over the range of lengths to which VB was 
fitted. According to Restrepo et al. (2010), they used a 
penalty term for each year analyzed (1970–76), using 
only length frequency observations. A penalty term 
represents a weight governing the amount of influence 
of each data set (shell length-at-age and shell length 
frequency distribution), and this should be imple-
mented in the joint log-likelihood function. However, 
according to Quinn and Deriso (1999), each penalty 
term is the inverse of the estimated variance of each 
data set, assuming that the variance is constant. In this 
study, we had data from early stages obtained from rear-
ing conditions during 2013. Our analysis estimated an 
individual variability-at-age observed in shell length-
at-age and shell length frequency distribution data, thus 
the variance was not constant; and consequently the 
inverse of the estimated variance that could represent 
the penalty term for each negative log-likelihood was 
not applicable, because we estimated variance-at-age. 
For any penalty term estimated, the main problem was 
to select the variance representing the best amount of 
influence of each data set, given that we estimated 26 
variance-at-age values, potentially to choose arbitrarily 
a variance-at-age (or average value) could represent bias 
in the joint negative log-likelihood function affecting 
the optimization of parameters in the candidate growth 
models selected.

defined as L0 parameter, which is empirical or a known 
value of length for organisms at their early growth stages. 
Consequently, L0 can be fixed, estimating only L∞ and 
k parameters. However, L0 parameter can be iteratively 
sampled from a normal distribution of possible values of 
length at an early growth stage; or it can be constrained 
over the range from known values of L0 thus assessing 
the effect in convergence thereby fixing this range.

In this study, estimates for t0 parameter ranged from 
0.027 to 0.23, negative values for this parameter were 
not computed. The best candidate growth model showed 
t0 = 0.069 ( Johnson) and t0 = 0.067 (Gompertz), where 
both estimates were very close. In previous studies of age 
and growth of P. globosa, the results estimated for t0 were 
highly variable; González-Peláez et al. (2015) showed 
values from –1.85 (VB) to 28.91 (Schnute), and the best 
candidate growth model selected by AICc was t0 = 0.003 
(Gompertz). Aragón-Noriega et al. (2015) analyzed shell 
length-at-age data for two populations of P. globosa in the 
upper Gulf of California, they reported negative values 
ranging from t0 = –2.99 (VB) to t0 = –0.005 (Logistic) 
to Puerto Peñasco, Sonora, and an interval of variation 
from t0 = –1.20 (VB) and t0 = 6.86 (Gompertz) to San 
Felipe, Baja California. In the central Gulf of California 
the estimates of t0 for P. globosa ranged within positive 
values from 0.24 (VB) to 2.26 (Logistic) (Cruz-Vázquez 
et al. 2012). For P. generosa, Hidalgo-de-la-Toba et al. 
(2015) analyzed five growth models, among them, three 
computed t0 = 0 (VB, Gompertz, and Johnson), while 
that the Logistic growth model estimated t0 = 1.34, and 
t0 = 1.78 for the Schnute growth model. This last model 
was also used by Cruz-Vázquez et al. (2012) and Aragón-
Noriega et al. (2015), however they did not report results 
associated with t0, assuming that t0 = 0 (table 6).

TABLE 5
Estimates of the age when shell length theoretically is zero for Panopea spp. using the von Bertalanffy growth model.

Species	 Country	 Location	 t0 	 Source

P. globosa	 Mexico	 Bahía del Sol	 –0.200	 Cortez-Lucero et al. (2011)
P. generosa	 Mexico	 San Quintín	 –3.190	 Calderon-Aguilera et al. (2010)
		  Islas Coronado	 –2.040	
				  
	 United States	 Hunter Point	   0.719	 Hoffman et al. (2000)
		  Agate Passage	   0.183	
		  Fishermans Point	   0.552	
		  Dallas Bank	   0.334	
				  
	 Canada	 Yellow Bank	 –1.420	 Campbell and Ming (2003)
		  Gabriola Island	 –1.020	
				  
P. abbreviata	 Argentina	 Puerto Lobos	 –1.500	 Morsan and Ciocco (2004)
		  Puerto Lobos	 –0.487	 Morsan et al. (2010)
		  El Sótano	 –2.397	 Morsan et al. (2010)
				  
P. zelandica	 New Zealeand	 Golden Bay	 –3.800	 Breen et al. (1991)
		  Shelly Bay	 –1.690	 Gribben and Creese (2005)
		  Kennedy Bay	 –1.670	 Gribben and Creese (2005)
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TABLE 6
Estimates of the age when shell length theoretically is zero for Panopea spp. using the multimodel inference approach.

Species	 Country	 Location	 Model	 t0 	 Source

P. globosa	 Mexico	 Bahía Magdalena	 VB	 –1.857	 González-Peláez et al. (2015)
			   GM	 0.003	
			   JN	 –0.301	
			   GVB	 0.713	
			   RC	 5.583	
			   SC	 28.911	

		  Puerto Peñasco	 VB	 –2.990	 Aragón-Noriega et al. (2015)
			   GM	 –1.310	
			   LG	 –0.005	
			   SC	 –	
			   SC-RC	 –	

		  San Felipe	 VB	 –1.200	 Aragón-Noriega et al. (2015)
			   GM	 6.860	
			   LG	 2.970	
			   SC	 –	
			   SC-RC	 –	

		  Empalme	 VB	 0.247	 Cruz-Vázquez et al. (2012)
			   GM	 1.401	
			   LG	 2.260	
			   SC-RC	 –	

P. generosa	 Mexico	 Punta Canoas	 VB	 0.000	 Hidalgo-de-la-Toba et al. (2015)
			   GM	 0.000	
			   JN	 0.000	
			   LG	 1.340	
			   SC	 1.780	

P. abbreviata	 Argentina	 El Sótano	 VB	 –3.830	 Zaidman and Morsan (2015)
			   GM	 0.120	
			   LG	 –1.770	
			   RC	 –31.870	
			   SC-RC	 –	

		  Punta Colorada	 VB	 –1.560	 Zaidman and Morsan (2015)
			   GM	 0.290	
			   LG	 0.780	
			   RC	 1.400	
			   SC-RC	 –	

		  Puerto Lobos	 VB	 –1.750	 Zaidman and Morsan (2015)
			   GM	 0.230	
			   LG	 0.370	
			   RC	 –3.760	
			   SC-RC	 –	

		  La Tapera	 VB	 –2.670	 Zaidman and Morsan (2015)
			   GM	 0.200	
			   LG	 0.200	

P. abbreviata	 Argentina	 La Tapera	 RC	 –1.980	 Zaidman and Morsan (2015)
			   SC-RC	 –	

		  Playa Fracasso	 VB	 –46.960	 Zaidman and Morsan (2015)
			   GM	 0.020	
			   LG	 133.060	
			   RC	 57.760	
			   SC-RC	 –	

		  Punta Conos	 VB	 –8,720	 Zaidman and Morsan (2015)
			   GM	 0,070	
			   LG	 –1,400	
			   RC	 –35,760	
			   SC-RC	 –	

The candidate growth models used in different studies are defined as: VB = von Bertalanffy, GM = Gompertz, JN = Johnson, LG = Logistic, GVB = generalized von Bertalanffy, 
RC = Richards, SC = Schnute, SC-RC = Schnute-Richards. 
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We used a new approach based on phenotypic vari-
ability in growth observed in P. globosa; it allowed that 
the variance for each age was also computed, and this 
feature has not been previously modeled for Panopea spe-
cies. Finally, our findings showed that the VB had higher 
variance for each age, and it was not suitable for Panopea 
globosa. We believe that if more data sources are included 
in this joint log-likelihood function (e.g., mark-recap-
ture observation) then the ontogenic life cycle can be 
represented, and improved parameters could be used in 
the stock assessment models (e.g., maximum yield per 
recruit), which would be useful in setting management 
quantity guidelines for Panopea species in the Mexican 
Pacific (Aragón-Noriega et al. 2012). This analysis and 
methodological approach based on phenotypic variabil-
ity in growth of Panopea globosa was found to be useful 
and probably its use can have wider applicability, thus 
allowing its use with other mollusks and marine organ-
isms for more accurate modeling of growth.
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