

Programa de Estudios de Posgrado

DIVERSIDAD GENÉTICA DEL CORAL *Pseudodiploria strigosa* EN EL CARIBE MEXICANO.

ΤΕSΙS

Que para obtener el grado de

Maestra en Ciencias

Uso, Manejo y Preservación de los Recursos Naturales (Orientación en Biología Marina)

Presenta

Luz Magali Sánchez Méndez

La Paz, Baja California Sur, marzo de 2024.

ACTA DE LIBERACIÓN DE TESIS

En la Ciudad de La Paz, B. C. S., siendo las 10:00 horas del día 26 del mes de febrero del 2024, se procedió por los abajo firmantes, miembros de la Comisión Revisora de Tesis avalada por la Dirección de Estudios de Posgrado y Formación de Recursos Humanos del Centro de Investigaciones Biológicas del Noroeste, S. C., a liberar la Tesis de Grado titulada:

"Diversidad genética del coral *Pseudodiploria strigosa* en el Caribe mexicano"

Presentada por el alumno:

Luz Magali Sánchez Méndez

Aspirante al Grado de MAESTRO EN CIENCIAS EN EL USO, MANEJO Y PRESERVACIÓN DE LOS RECURSOS NATURALES CON ORIENTACIÓN EN <u>Biología Marina</u>

Después de intercambiar opiniones los miembros de la Comisión manifestaron su **APROBACIÓN DE LA TESIS**, en virtud de que satisface los requisitos señalados por las disposiciones reglamentarias vigentes.

LA COMISIÓN REVISORA

Dr. David Arturo Paz García Co-Director de Tesis

Dr. Fausto Valenzuela Quiñonez Co-Director de Tesis

Dr. Lorenzo Álvarez Filip Co-Tutor de Tesis

Dra. Alejandra Nieto Garibay, Directora de Estudios de Posgrado y Formación de Recursos Humanos.

La Paz, Baja California Sur, a 28 de 02 de 2024.

Diversidad genética del coral Pseudodiploria strigosa en el

Los miembros del comité de tesis del (la) estudiante LUZ MAGALI SANCHEZ MENDEZ del Programa de Maestría en el Uso, Manejo y Preservación de los Recursos Naturales, revisamos el contenido de la tesis y otorgamos el Vo.Bo. dado que la tesis no representa un plagio de otro documento como lo muestra el reporte de similitud realizado:

- Herramienta antiplagio: iThenticate
- Filtros utilizados: Excluir citas. Excluir Bibliografía. Excluir las coincidencias inferiores a 10.
- Porcentajes de similitud: 13% Máximo 20% para tesis Posgrado Se muestra captura de pantalla

INFO	INFORME DE ORIGINALIDAD		
13% INDICE DE SIMILITUD			
FUENTES PRIMARIAS			
1	www.researchgate.net	195 palabras — 2%	
2	consultaspublicas.semarnat.gob.mx Internet	164 palabras — 1 %	
3	cicese.repositorioinstitucional.mx	161 palabras — 1 %	
4	docplayer.es Internet	148 palabras — 1%	
5	recursos.corpoica.org.co	79 palabras — 1 %	
6	repositorioinstitucional.uabc.mx	75 palabras — 1%	
7	pt.scribd.com	66 palabras — 1 %	
8	storage.googleapis.com	53 palabras — < 1%	
9	apps1.semarnat.gob.mx:8443	50 palabras — < 1%	

Firmas del Comité

mike/fl

Dr. David Arturo Paz García Dr. Fausto Valenzuela Quiñonez

Dr. Lorenzo Álvarez Filip

Conformación de Comités

Comité Tutorial

Dr. David Arturo Paz García Centro de Investigaciones Biológicas del Noroeste, S.C. Co-Director de Tesis

Dr. Fausto Valenzuela Quiñonez Centro de Investigaciones Biológicas del Noroeste, S.C. Co-Director de Tesis

Dr. Lorenzo Álvarez Filip Instituto de Ciencias del Mar y Limnología (ICML) Universidad Nacional Autónoma de México (UNAM) Co-Tutor de Tesis

Comité Revisor de Tesis

Dr. David Arturo Paz García Dr. Fausto Valenzuela Quiñonez Dr. Lorenzo Álvarez Filip

Jurado de Examen

Dr. David Arturo Paz García Dr. Fausto Valenzuela Quiñonez Dr. Lorenzo Álvarez Filip

Suplente

Dr. Eduardo Quiroz Guzmán

Resumen

Los arrecifes de coral del Caribe Mexicano están en crisis debido a múltiples amenazas persistentes a las que se enfrentan. Una de las amenazas más recientes es la pérdida de tejido de corales pétreos (SCTLD). Dentro de las especies más afectadas se encuentra Pseudodiploria strigosa, especie de gran importancia ecológica al ser un coral perteneciente al orden de los escleractinios (formadores de arrecifes). Es de vital importancia integrar estudios genéticos para conservar el potencial adaptativo y evolutivo de las especies ante el cambio climático y enfermedades emergentes. Desafortunadamente no existen suficientes estudios en el Caribe mexicano que detallen la dinámica poblacional de la especie, así como su conectividad y diversidad genética, lo que dificulta dichas acciones de conservación. Debido a la forma de reproducción de Pseudodiploria strigosa y su alto potencial de dispersión se espera que exista una alta diversidad genética en la zona de estudio. El objetivo del estudio se centró en evaluar la diversidad genética en diferentes localidades del Caribe mexicano mediante el uso de las herramientas moleculares y la aplicación de técnicas de secuenciación utilizando polimorfismos de un solo nucleótido (SNPs), marcadores mitocondriales y nucleares. Se analizaron muestras de tejido de Pseudodiploria strigosa de 146 colonias diferentes. Se elaboraron las librerías genómicas para ser enviados a secuenciar por medio de Ilumina y también se llevó a cabo la secuenciación Sanger para poder observar la diversidad genética por medio de la diversidad haplotípica y nucleotídica. Aunque se obtuvo un catálogo de 463,043 loci, no se encontraron loci compartidos entre las localidades o entre colonias dentro de las localidades al momento de filtrar por localidades e individuos. Para el marcador Pax-C se detectaron 24 haplotipos únicos, y elevada diversidad haplotípica $Hd = 0.764\pm0.04$ y baja diversidad nucleotídica $\pi =$ 0.0064±0.0007. El marcador MaSC1 se obtuvieron 22 haplotipos únicos y una mayor diversidad haplotípica $Hd = 0.918\pm0.02$ y baja diversidad nucleotídica $\pi = 0.0088\pm0.0007$. Estos valores se han observado en poblaciones que han experimentado un estrechamiento del número de individuos seguido por un posterior crecimiento poblacional. Este trabajo es pionero en la generación del conocimiento genético de la especie.

Palabras clave: Pseudodiploria strigosa, SNPs, escleractinios, genómica, ddRAD-seq, conservación.

ORCID: 0000-0002-9311-6832

Vo.Bo. Co-Directores de Tesis

<u>lanika/ll</u>

Dr. David A. Paz García

Dr. Fausto Valenzuela Quiñonez

Summary

The coral reefs of the Mexican Caribbean are in crisis due to multiple persistent threats they face. One of the most recent threats is the Stony Coral Tissue Loss Disease (SCTLD). Among the most affected species is *Pseudodiploria strigosa*, a species of great ecological importance as it belongs to the order of scleractinians (reef builders). It is vital to integrate genetic studies to conserve the adaptive and evolutionary potential of species in the face of climate change and emerging diseases. Unfortunately, there are not enough studies in the Mexican Caribbean detailing the population dynamics of the species, as well as its connectivity and genetic diversity, which hinders conservation efforts. Due to the reproductive mode of *Pseudodiploria* strigosa and its high potential for dispersal, it is expected to have high genetic diversity in the study area. The objective of the study focused on evaluating genetic diversity in different locations of the Mexican Caribbean using molecular tools and applying sequencing techniques with single nucleotide polymorphisms (SNPs), mitochondrial, and nuclear markers. Tissue samples from 146 different colonies of *Pseudodiploria strigosa* were analyzed. Genomic libraries were prepared to be sequenced using Illumina, and Sanger sequencing was also performed to observe genetic diversity through haplotypic and nucleotide diversity. Although a catalog of 463,043 loci was obtained, no loci were found shared among locations or colonies within locations when filtering by locations and individuals. For the Pax-C marker, 24 unique haplotypes were detected, with high haplotypic diversity $Hd = 0.764 \pm 0.04$ and low nucleotide diversity $\pi = 0.0064 \pm 0.0007$. For the MaSC1 marker, 22 unique haplotypes were obtained, with higher haplotypic diversity $Hd = 0.918\pm0.02$ and low nucleotide diversity $\pi = 0.0088\pm0.0007$. These values have been observed in populations that have undergone a bottleneck followed by subsequent population growth. This work is pioneering in generating genetic knowledge of the species.

Keywords: Pseudodiploria strigosa, SNPs, scleractinians, genomics, ddRAD-seq, conservation.

ORCID: 0000-0002-9311-6832

Vo.Bo. Co-Directores de Tesis

lanite fell

Dr. David A. Paz García

Dr. Fausto Valenzuela Quiñonez

Dedicatoria

A todos los que han sido parte de este viaje. A los que se fueron por esas cosas del destino o incluso porque no quisieron quedarse. Especialmente a los que, a pesar del tiempo y la distancia que nos separa, siguen caminando conmigo.

"Cuando dejas de temerle al fuego, puedes encender tu propia llama" -Apolonia, Apolonia.

Agradecimientos

Al Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT) por la beca con número (CVU) 1139475 otorgada para realizar mis estudios de maestría. Así mismo, por el apoyo al Proyecto Ciencia de Frontera 2019 (ID 425888): "Respondiendo a una nueva crisis que enfrentan los arrecifes de coral en el Caribe mexicano: acciones para mitigar una enfermedad emergente de corales y la degradación de arrecifes", que fue el sustento de mi trabajo.

Al Centro de Investigaciones Biológicas del Noroeste S.C (CIBNOR), y a la Dirección de Estudios de Posgrado y Formación de Recursos Humanos, por aceptarme y permitirme ser parte del Posgrado de Maestría en ciencias en el Uso, Manejo y Preservación de los Recursos Naturales; así como por la beca para la manutención ofertada por la institución en los últimos meses.

Al Instituto de Ciencias del Mar y Limnología de la Universidad Nacional Autónoma de México (ICML-UNAM) por el recibimiento y el apoyo brindado en la recolección de las muestras para mi trabajo.

A los miembros de mi comité: el Dr. David Arturo Paz García, el Dr. Fausto Valenzuela Quiñonez, y el Dr. Lorenzo Álvarez Filip por el apoyo en todo momento, el conocimiento compartido y las enseñanzas de vida, pero sobre todo por creer en mí.

A la MC. Delia Irene Rojas Posadas, responsable técnico del Laboratorio de Genética Molecular del CIBNOR y a la Dra. Noemí Bocanegra Castillo, responsable técnico del Laboratorio de Necton y Ecología de Arrecifes del CIBNOR, por su recibimiento y apoyo en todo momento.

A mi familia: mis padres, hermanos, tíos, primos, cuñadas y a mi abuela que siempre están, aún en la distancia. En especial a Memo, quien fue mi apoyo incondicional y me animo a no rendirme.

A Lalo Cervantes, por apoyarme en mis sueños, brindarme mucho amor y abrazar mi alma.

A Adriana Torres, quien ha sido una amiga incondicional y un curita para el alma.

A mis roomies Jehiel y Geovanna, por los momentos de risa, las noches de desvelo, las aventuras y el puente que cruzamos en este tiempo juntas. Más que mis amigas son mis hermanas.

A mis niños y hermanos de los Scouts que siempre llevaré en el corazón a donde quiera que vaya, especialmente a Claudia, Rubén y Daniela.

A Paulina, Paulo y Amanda por ser mis maestros y por las grandes personas que son.

A Gibran Segovia, Hugo Barradas, Sara Gálvez, José Ríos, Alan Guajardo, Ángel Villanueva, Juan Staufert, Perla Marín, Paola Palacios, Erick Bolaños, Erick Treviño, Eduardo Priori, José María Morales, Gabriel Carrera y Alexis Martínez, por ser buenos amigos en esta etapa y formar parte de de ella.

A Giacomo y Selene por enseñarme a vencer mis miedos y guiarme a descubrir las profundidades del mar.

A mis compañeros de laboratorio quienes hicieron el trabajo de laboratorio más sencillo y alegre.

A Quique Huerta por ser mi personita siempre.

A Bali por encontrarme y darme su amor incondicional.

A cualquiera que haya omitido pero que estuvo ahí para mí en esta etapa de mi vida.

Al mar y a los corales por permitirme apreciar su mundo.

Contenido

Resumen	i
Summary	ii
Dedicatoria	iii
Agradecimientos	iv
Contenido	vi
Lista de figuras	viii
Lista de tablas	ix
Abreviaturas	X
1. INTRODUCCIÓN	1
1.1 Arrecifes coralinos	1
1.2 Reproducción	2
1.3 Diversidad genética	2
2. ANTECEDENTES	5
2.1 Genética de poblaciones	5
2.2 Secuenciación Sanger con PCR	6
2.3 Secuenciación masiva y SNPs	7
2.4 Estudios de genética y conectividad en corales pétreos	9
3. JUSTIFICACIÓN	11
4. HIPÓTESIS	12
5. OBJETIVOS	13
5.1 Objetivo general	13
5.2 Objetivos particulares	13
6. MATERIAL Y MÉTODOS	14
6.1 Área de Estudio	14
6.2 Trabajo de campo (Recolección de muestras)	17
6.3 Trabajo de laboratorio	17
6.4 Elaboración de librerías	18
6.5 Bioinformática	20
6.6 Secuenciación Sanger	23
6.7 Diversidad genética	24
7. RESULTADOS	25
7.1 SNPs	25
7.2 Diversidad genética (marcadores mitocondriales y nucleares)	27
7.3 Diversidad genética por sitio	27
7.4 Diversidad genética por región	32
7.5 Diversidad genética por condición	35
7.6 Diversidad genética por año	37
7.7 Diversidad genética por año (Puerto Morelos)	39
8. DISCUSIÓN	41
8.1 Diversidad genética con ddrad-seq	41
8.2 Diversidad genética marcadores mitocondriales y nucleares	43
9. CONCLUSIONES	45

10. LITERATURA CITADA	46
11. ANEXOS	52
ANEXO A. Geles y cuantificaciones de extracción de DNA	52
ANEXO B. Geles de librerías (Verificación de ligación, PCR 1)	53
ANEXO C. Cuantificaciones finales de librería.	54
ANEXO D. FASTQC	56
ANEXO E. Iteraciones del parámetro M	57
ANEXO F. Geles de Agarosa, amplificación de las regiones del gen MaSC1 y Pax-C	58
ANEXO G. Cuantificación de ADN	59
ANEXO H. Cuantificación de lecturas	63

Lista de figuras

Figura 1. Mapa de las regiones arrecifales y sitios de muestreo dentro del Gran Cinturón de
Arrecifes del Atlántico Occidental14
Figura 2. Lecturas retenidas por individuo
Figura 3. Lecturas alineadas con el simbionte26
Figura 4. Lecturas alineadas con el hospedero26
Figura 5. Diversidad haplotípica por sitio
Figura 6. Diversidad nucleotídica por sitio29
Figura 7. Porcentaje de muestras con un solo Haplotipo (H1) y dos Haplotipos (H2). N= Número
de muestras
Figura 8. Porcentaje de muestras con un solo haplotipo (H1) y con dos haplotipos (H2). N=
Número de muestra
Figura 9. Porcentaje de muestras con un solo haplotipo (H1) y con dos haplotipos (H2). N=
Número de muestras
Figura 10. Porcentaje de muestras con un solo haplotipo (H1) y con dos haplotipos (H2).
N=Número de muestras
Figura 11. Porcentaje de muestras con un solo haplotipo (H1) y con dos haplotipos (H2). N=
Número de muestras40

Lista de tablas

Tabla 1. Número de muestras por sitio de muestreo	17
Tabla 2. Secuencias de los index	20
Tabla 3. Valores de los parámetros de filtrado con el módulo populations del programa stac	ks
	23
Tabla 4. Número de lecturas retenidas, de baja calidad y sitos de corte RAD no encontrados.	25
Tabla 5. Obtención de loci filtrado de loci con el módulo populations	27
Tabla 6. Diversidad genética por sitio para el gen Pax-C	28
Tabla 7. Diversidad genética por sitio para el gen MaSC1	28
Tabla 8. Diversidad genética por regiones (Pax-C)	32
Tabla 9. Diversidad genética por regiones (MaSC1).	33
Tabla 10. Diversidad genética por condición (Pax-C)	35
Tabla 11. Diversidad genética por condición (MaSC1)	35
Tabla 12. Diversidad genética por año (Pax-C)	37
Tabla 13. Diversidad genética por año (MaSC1).	37
Tabla 14. Diversidad genética por año, Puerto Morelos (Pax-C)	39
Tabla 15. Diversidad genética por año, Puerto Morelos (MaSC1)	39

Abreviaturas

ADN:	Ácido desoxirribonucleico.
EUA:	Estados Unidos de América.
ddNTP:	Didesoxinucleótidos.
ddRad-seq:	Sitio asociado a doble digestión.
Fis:	Índice del coeficiente de consanguinidad
NTP:	Trifosfatos de nucleótido.
PCR:	Cadena en reacción de la polimerasa.
SCTLD:	Pérdida de tejido de corales pétreos.
SNPs:	Polimorfismos de un solo nucleótido.

1. INTRODUCCIÓN

1.1 Arrecifes coralinos

Los arrecifes coralinos ocupan solo el 1% del total de los océanos, pero son unos de los ecosistemas más ricos en especies del planeta y son de gran importancia ya que son zonas de refugio, reproducción y crianza de múltiples especies, además brindan servicios ecosistémicos y tienen una gran importancia socioeconómica (Moberg y Folk, 1999; Pérez-Cervantes et al., 2017).

Los arrecifes de coral desempeñan un papel vital en los ciclos biogeoquímicos globales al actuar como sumideros de carbono y contribuir a la producción de oxígeno. También proporcionan hábitats cruciales para la cría de peces, lo que contribuye a mantener poblaciones pesqueras saludables.

Los arrecifes coralinos se encuentran construidos por diversos organismos calcificadores, donde los principales constructores son los corales del orden Scleractinia, conocidos como corales duros o pétreos, los cuales forman parte de los componentes clave en los arrecifes ya que son los principales encargados de darles estructura principal a través de su soporte primordial, que es el esqueleto coralino (Brusca, Brusca, 2005). Los corales son organismos pertenecientes al reino Animalia y al filo de los Cnidarios, y se caracterizan por poseer pequeñas unidades coloniales que son conocidas como pólipos, los cuales viven en relación simbiótica con microalgas dinoflageladas llamadas zooxantelas pertenecientes al género *Symbiodinium*, que son las que le dan color al coral y por medio del proceso fotosintético transfieren más del 90% de nutrientes al coral (Barnes, 1974; Brusca y Brusca, 2005).

Hoy en día muchos arrecifes de coral están en grave declive debido al cambio climático, los factores de estrés antropogénicos y las enfermedades de las últimas décadas (Bellwood et al., 2004). Una nueva amenaza altamente letal, llamada pérdida de tejido de coral pétreo (SCTDL). Dicha enfermedad se caracteriza por la aparición de múltiples lesiones que provocan una rápida pérdida de tejido, lo que lleva a la exposición de esqueletos de color blanco que suelen

presentarte en forma de banda a lo largo del coral (Álvares Filip et al., 2019). Además, hay una deficiencia en la capacidad de acumular carbonato de calcio en un periodo de tiempo más corto a comparación de otras enfermedades (Camacho-Vite et al., 2022). El SCTDL ha afectado aproximadamente a 24 de las 46 especies del Caribe mexicano, entre las que se encuentra *Pseudodiploria strigosa* (Álvarez-Filip et al., 2019). Dicha especie es de gran importancia debido a que es una de las principales constructoras de arrecifes del Caribe mexicano (Thome et al., 2021).

1.2 Reproducción

La reproducción de esta especie es primordialmente sexual en donde los gametos son liberados al exterior para posteriormente ser fecundados y viajar varios días por las corrientes marinas hasta finalmente asentarse (Bassim & Sammarco, 2003). Las larvas de esta especie poseen un potencial de dispersión que les permiten recorrer distancias registradas de hasta 84 km en 7 días en distintas direcciones. El potencial de dispersión larval es proporcional a la duración larval (Bassim & Sammarco, 2003).

Otros experimentos han demostrado que *Pseudodiploria strigosa* puede llegar a ser de las especies de desove externo en las que las larvas, y posteriormente los reclutas, tienen mayor supervivencia y fecundidad (Ritson-Williams et al., 2010).

1.3 Diversidad genética

La diversidad genética se describe como las variaciones transmitidas de generación en generación que se presentan en cada organismo, tanto entre los individuos dentro de una población como entre poblaciones dentro de una especie. Esta diversidad surge de las variaciones que existen entre las diferentes versiones o alelos de los genes, que son las unidades de herencia, presentes en los individuos de una especie. Los genes son porciones de ácido desoxirribonucleico (ADN) distribuidas en cromosomas, cuyo número y forma pueden variar entre especies. El ADN contiene la información genética que guía el desarrollo de los

organismos. Estas diferencias heredables proporcionan el material sobre el cual actúan los procesos evolutivos, dando forma a la amplia gama de características presentes en los seres vivos (Piñero et al., 2008).

La conectividad genética de los arrecifes requiere que ocurra la dispersión del material genético, por lo que transferencia efectiva entre las poblaciones requiere el asentamiento exitoso de las poblaciones reproductoras (Sale et al., 2020). Es decir que la conectividad entre las poblaciones no puede ser medida centrándose sólo en los patrones de dispersión, sino que se deben incluir de igual forma, el reclutamiento exitoso de la población receptora permitiendo la transferencia de genes (Jordán-Dahlgren, 2002). Sin embargo, el intercambio relativamente bajo de los organismos también puede permitir un nivel suficiente de transferencia de genes, y, por ende, puede dar lugar a poblaciones genéticamente similares. En el caso de niveles de intercambio excepcionalmente bajos, las poblaciones tienden a divergir genéticamente de manera muy lenta, por medio de procesos como la deriva genética, la mutación y la selección diferencial. Con el tiempo, estas poblaciones pueden convertirse en especies separadas (Jones et al., 2007).

La diversidad genética y conectividad de los individuos resulta fundamental para la supervivencia de la especie a largo plazo y es sin lugar a duda la materia prima para la evolución, ya que de ella dependen tanto la adaptación como la especiación. Los niveles altos de diversidad pueden dar la habilidad para responder a enfermedades (Hedrick, 2001). Por el contrario, si dicha diversidad se reduce en una población, disminuye su capacidad de adaptarse ante potenciales cambios ambientales (Hedrick, 2000). Por lo anterior se vuelve cada vez más necesario comprender la diversidad y la conectividad genética entre las poblaciones de las especies para desarrollar estrategias de manejo eficientes que faciliten la supervivencia y adaptación de los arrecifes de coral en el futuro (Rippe, 2017).

La diversidad genética de los corales es de vital importancia ya que es la base de la tasa de éxito de los esfuerzos de restauración, ya que es vital integrar estudios genéticos para conservar el potencial adaptativo y evolutivo de las especies ante el cambio climático y enfermedades emergentes. Desafortunadamente no existen suficientes estudios en el Caribe Mexicano que detallen la dinámica poblacional de la especie, así como su conectividad y diversidad genética, lo que dificulta dichas acciones de conservación partiendo de una base genética.

Es por lo anterior que el presente estudio busca responder, con ayuda de herramientas moleculares y bioinformáticas, a las preguntas de investigación en torno a la diversidad genética de la especie y su conectividad para eliminar las brechas de conocimiento existentes y así poder implementar mejores estrategias de conservación que consideren la preservación genética de la especie.

2. ANTECEDENTES

2.1 Genética de poblaciones

Para estudiar la variación del DNA de las poblaciones de una especie, considerando tanto el genoma como ciertas regiones o genes, se han desarrollado en los últimos años técnicas de biología molecular y de secuenciación que han permitido analizar la diversidad genética completa, es decir que han permitido a los biólogos evolutivos hacer genómica de poblaciones (López, 2016). Esto último es la principal distinción entre la genética de poblaciones y la genómica poblacional, básicamente ahora se cuenta con una mayor capacidad para muestrear a lo largo del genoma y a su vez, esto permite identificar procesos evolutivos a nivel de amplitud de genoma causados por evolución neutral (demografía) de aquellos procesos en locus específicos que responden a presiones selectivas (Luikart et al 2003).

Una de las aplicaciones más interesantes de la genética de poblaciones es en relación con la biología de la conservación. Actualmente, por diversas crisis y amenazas de origen ambiental y antropogénico, gran cantidad de especies se encuentran en fuerte peligro de extinción por diversas razones que han reducido el tamaño de las poblaciones y su conectividad, reduciendo el flujo génico, el tamaño efectivo y la variación genética (Eguiarte et al., 2013).

La diversidad genética de las especies es muy importante debido a que mantiene el potencial evolutivo que es el reservorio de respuestas que las especies tienen contra diferentes amenazas del medio lo que les concede la capacidad para adaptarse. Sí la diversidad genética de una población se ve reducida también lo hará su probabilidad de resiliencia ante posibles amenazas (Martínez-Castillo et al., 2018).

El flujo génico se refiere a todos los mecanismos que generan movimiento de genes de una población a otra. Las poblaciones de una especie pueden intercambiar genes en mayor o menor grado debido al movimiento de gametos, individuos juveniles o adultos, así como por eventos de extinción y recolonización de poblaciones enteras, aunque cabe mencionar que los migrantes

que no se reproducen en la población a la que migraron no contribuyen al flujo génico (Planter et al., 2007).

Evaluar los niveles de variación de las poblaciones, describir las diferencias en composición genética entre las mismas y tratar de proponer métodos para generar patrones de flujo génico que mantengan la variación en estas poblaciones y que minimicen la deriva génica ayudara en los programas de conservación y así a la sobrevivencia de éstas (Eguiarte et al., 2013).

El estudio de la genómica de poblaciones marinas permite cerrar las brechas de conocimiento para identificar genotipos que contribuyen al reclutamiento exitoso, que influyen en los desastres o aquellos que hacen que las especies habiten ambientes marginales. Si bien estas son algunas de las promesas de la genómica marina, actualmente, la genómica de poblaciones proporciona enfoques poderosos para descubrir la conectividad de las poblaciones, que puede ser especialmente difícil de estudiar en ecosistemas marinos donde los organismos están ocultos a la vista y difíciles de seguir a través del tiempo. Esta información es fundamental para la gestión y conservación de las especies marinas (Oleksiak et al., 2020).

2.2 Secuenciación Sanger con PCR

La secuenciación Sanger con PCR es una variante de la secuenciación Sanger clásica que emplea la reacción en cadena de la polimerasa (PCR) para amplificar fragmentos específicos de ADN antes de la secuenciación. En este proceso, se utilizan cebadores específicos para amplificar el ADN de interés. Esto es útil cuando se trabaja con cantidades limitadas de ADN o cuando se necesita amplificar un fragmento específico antes de secuenciarlo (López, 2016).

En esta reacción, los ddNTP (didesoxinucleótidos) se marcan con fluorocromos de colores diferentes para cada base, lo que permite determinar el color y, por ende, el NTP (trifosfatos de nucleótido) respectivo de cada cadena terminada. Esto permite que el sistema óptico del equipo identifique directamente las señales de fluorescencia de cada base en un gráfico, donde cada

pico de intensidad de luz corresponde al color del fluorocromo asociado a cada base (López, 2016).

Los cromatogramas son gráficos que muestran los resultados de una secuencia Sanger. En un cromatograma típico, el eje x representa la posición en la secuencia, mientras que el eje y representa la intensidad de la señal fluorescente, que está relacionada con la cantidad de fragmentos de ADN presentes en cada posición (Meda et al., 2011). Cada pico en el cromatograma corresponde a un nucleótido específico en la secuencia de ADN, y la altura y la forma de los picos proporcionan información sobre la calidad de la secuencia y la presencia de posibles mutaciones o variaciones. En resumen, la secuenciación Sanger por PCR combina la amplificación de un fragmento de ADN mediante PCR con la secuenciación Sanger para determinar la secuencia de nucleótidos de ese fragmento, y los cromatogramas son la representación gráfica de los resultados de la secuenciación.

Algunas investigaciones en especies de corales como *Acropora muricata, Montastraea annularis, Pseudodiploria strigosa y Pseudodiploria clivosa*, entre otros, en los que han estudiado la estructura y la divergencia genética con marcadores nucleares y mitocondriales, se han utilizado este tipo de técnicas de secuenciación molecular para obtener sus resultados, permitiéndoles observar diversidad haplotípica, estructura genética poblacional y filogenia molecular para proporcionar información genética base sobre la dinámica poblacional de corales pétreos y así implementar mejoras en la gestión de estrategias de conservación apropiadas (Catmull et al., 1998; Chiou et al., 2008 Gutiérrez, 2022; Schwartz et al., 2012; Severance et al., 2004).

2.3 Secuenciación masiva y SNPs

La secuenciación masiva se presenta como una herramienta fundamental para el estudio de la diversidad biológica, porque permite un análisis eficiente y profuso de genomas y transcriptomas en un gran número de individuos de especies no modelo obteniendo una profundidad de secuenciación significativa (López, 2016).

El método ddRADseq permite el genotipado simultáneos de alto rendimiento del polimorfismo de secuencia, con o sin una referencia existente genoma. En comparación con los enfoques RADseq existentes, ddRADseq permite una mayor flexibilidad y solidez en la recuperación de la región y una disminución sustancial en el costo, el material genómico requerido de las muestras y la inversión de tiempo del investigador (Peterson et al., 2012).

Los marcadores moleculares son una herramienta utilizada en estudios de diversidad genética ya que nos permiten conocer cómo se encuentran las proporciones de genes en las poblaciones naturales de manera indirecta, como con los análisis de proteínas, o de manera directa con estudios de ADN. Los diferentes tipos de marcadores se distinguen por su capacidad de detectar polimorfismos en loci únicos o múltiples (Eguiarte et al., 2013).

Un polimorfismo nucleotídico simple (SNP, por sus siglas en inglés) se define como un cambio en la secuencia de ADN de un nucleótido por otro. Dado que el ADN contiene cuatro nucleótidos (adenina, guanina, citosina y timina), un SNP como máximo tendrá cuatro alelos. Los SNP son las variaciones más comunes en los genomas de los organismos eucariotas y se pueden localizar en genes, por lo tanto, están sujetos a selección (no neutro), como en las regiones intergénicas (neutros) (Ramírez-Bello et al., 2013; Sturm et al., 2022).

Solo se ha reportado un estudio con SNPs en Florida, EUA (Estados Unidos de América) en donde han desarrollado148 nuevos marcadores de polimorfismo de un solo nucleótido (SNP) utilizando genotipado por secuenciación (GBS). La heterocigosidad observada (Ho) y la heterocigosidad esperada (He) que se encontraron oscilaron entre 0,008 y 0,888 y entre 0,018 y 0,500, respectivamente. Las desviaciones del equilibrio de Hardy-Weinberg dentro de las poblaciones, medidas por el índice del coeficiente de consanguinidad (Fis), oscilaron entre - 0,799 y 0,923. En total, se encontró que 96 SNP se desviaban significativamente de Hardy-Weinberg (p <0,05). Se reportó que las desviaciones podrían haber resultado de la endogamia, la subestructura de la población, la selección purificadora, la variación del número de copias o el error de genotipado (Vollmer et al., 2022).

2.4 Estudios de genética y conectividad en corales pétreos

Pseudodiploria strigosa es un coral escleractinio que se encuentra en el Caribe mexicano y es de gran importancia por sus características ecológicas al ser de los principales formadores de arrecifes de coral (Thome et al., 2012; Peréz-Cervantes, 2017). Esta especie sigue un ciclo reproductivo caracterizado por la reproducción sexual y el hermafroditismo simultáneo, con fecundación externa. El proceso inicia con la liberación de gametos al medio ambiente, donde se produce la fertilización. Después de la fecundación en el entorno externo, los embriones resultantes permanecen a la deriva durante varios días, llevados por las corrientes marinas. Posteriormente, se forma una larva plánula que flota a través de la columna de agua. Al alcanzar cierta etapa, la larva plánula se asienta en el lecho marino, donde inicia su metamorfosis hacia la forma de pólipo. En este punto, la especie adopta un estilo de vida sésil, anclándose al fondo marino (Weil, 2010).

Algunos estudios dentro del sistema arrecifal veracruzano han mostrado, mediante análisis filogenéticos, una notable variabilidad genética entre las colonias de *Pseudodiploria*. Los estudios moleculares llevados a cabo han revelado que esta especie de coral hereda una diversidad fenotípica y genética que está vinculada a perturbaciones ambientales (Chávez, 2009; Colín-García et al., 2020).

Los análisis moleculares indican que las condiciones ambientales adversas inducen estas variaciones, y la especie ha desarrollado la capacidad de transmitir estas adaptaciones, como lo es el tamaño de las colonias, a las generaciones posteriores. Estos hallazgos sugieren una notable capacidad de supervivencia y adaptación de estas colonias de *Pseudodiploria* en respuesta a las condiciones cambiantes del entorno (Colín-García et al., 2020).

Estudios con > 9,000 loci de polimorfismo de un solo nucleótido han demostrado que poblaciones de corales que se encuentran en profundidades diferentes (mesofóticas superficiales y superiores emparejadas) variaba significativamente según la ubicación y si bien la conectividad vertical entre poblaciones mesofóticas y poco profundas (0-30m) emparejadas

puede variar, ciertas poblaciones mesofóticas superiores (30-60m) pueden desempeñar un papel importante en el mantenimiento de las metapoblaciones de coral y podrían actuar como refugio al contribuir a la recuperación y persistencia de la meta población (Sturm, 2022).

Por otro lado, estudios en *Acropora spp*. de las regiones de Mar Caribe y Banco Campeche, en distancias que van desde los 193 km hasta los 1200 km, han mostrado valores de φ_{ST} negativos en las comparaciones pareadas, sugiriendo que el flujo genético en esta región es muy fuerte, lo que podría verse asociado a la intensidad de la corriente de Yucatán, la cual muy posible facilita el flujo de larvas de los arrecifes del Mar Caribe a Banco Campeche (Quintero 2017). Sin embargo, otros autores han sugerido lo contrario (Domínguez-Maldonado, 2012), encontrando una alta estructura entre ambas regiones y sugiere que la corriente de Yucatán puede estar actuando como una barrera para el transporte larvario (Quintero, 2017) lo que impide la transferencia de genes entre los distintos sitios.

Por otro lado, existe evidencia que demuestra una correlación entre la similitud biológica (diversidad de especies) y las distancias geográficas, siendo menor la primera conforme aumenta la segunda, permitiendo confirmar que los niveles de conectividad pueden ser potencialmente bajos del Caribe mexicano al interior del Golfo de México debido a la distancia (Chávez, 2009).

De igual manera se han realizado estudios genéticos con 9 microsatélites en poblaciones de *Orbicella faveolata* y se ha reportado que están relativamente bien mezcladas en todo el Gran Caribe (F_{ST} = 0,038). Sin embargo, también se ha encontrado estructura genética que surge tanto a escala local como regional, es decir a escalas que van desde los 2km hasta los 500 km. Además, se ha sugerido que la distancia geográfica no es la principal fuerza estructurante en todo el rango de estudio, pero puede ser un mecanismo subyacente débil de aislamiento genético que existe dentro de un sistema complejo de factores oceanográficos y biológicos (Rippe, 2017).

3. JUSTIFICACIÓN

Los corales escleractinios son de gran importancia ya que albergan una gran cantidad de biodiversidad, son sitios de reproducción, refugio y alimento. Además, tienen una gran importancia socioeconómica y proveen diversos servicios ambientales.

Desafortunadamente, las poblaciones de coral están cada vez más amenazadas por varios factores antropogénicos y ambientales que han ocasionado que las tasas de mortalidad de muchas especies vayan en aumento. Uno de estos factores son las enfermedades emergentes como las que se han presentado en el Caribe mexicano en los últimos años. La pérdida de tejido Pétreo es una de dichas amenazas que causa la muerte del tejido de las colonias) y deja expuesto los esqueletos, creando el efecto de manchas blancas que rápidamente avanzan por toda la colonia, hasta matarla por completo en unas pocas semanas.

Existe una gran falta de información e integración de estudios genéticos en especies coralinas como *Pseudodiploria strigosa*, así como de estudios que reporten el grado de conectividad entre y dentro de sus poblaciones, lo que dificulta la mejora de estrategias de conservación.

Este trabajo es pionero en la generación del conocimiento genético de la especie, lo que permitirá desarrollar más investigaciones en torno a la conservación de la especie partiendo de una base genética.

4. HIPÓTESIS

Debido a la forma de reproducción de *Pseudodiploria strigosa,* su alto potencial de dispersión y la escala de estudio, se espera que exista una elevada diversidad genética a lo largo de la zona de estudio.

5. OBJETIVOS

5.1 Objetivo general

Evaluar la diversidad genética de *Pseudodiploria strigosa* en diferentes localidades del Caribe mexicano mediante herramientas moleculares y la aplicación de técnicas de secuenciación utilizando polimorfismos de un solo nucleótido (SNPs), marcadores mitocondriales y nucleares (Secuenciación Sanger).

5.2 Objetivos particulares

- I. Identificar polimorfismos de un solo nucleótido de *Pseudodiploria strigosa*.
- II. Conocer la diversidad haplotípica y nucleotídica en localidades del Caribe mexicano.
- III. Comparar la variación genética entre localidades del Caribe mexicano.

6. MATERIAL Y MÉTODOS

6.1 Área de Estudio

La región denominada Arrecife de Puerto Morelos forma parte del extenso sistema de arrecifes conocido como el "Gran Cinturón de Arrecifes del Atlántico Occidental" (Fig. 1), que se considera la segunda formación arrecifal más grande del mundo. Esta área específica, ubicada frente a Puerto Morelos, se extiende hacia el norte hasta conectar con el Parque Nacional Costa Occidental de Isla Mujeres, Punta Cancún y Punta Nizuc (Carabias et al., 2000). Dentro de la región de Puerto Morelos, existen diversas áreas con características únicas en cuanto a profundidad, oleaje, temperatura, entre otros aspectos (Chávez, 2009).

Figura 1. Mapa de las regiones arrecifales y sitios de muestreo dentro del Gran Cinturón de Arrecifes del Atlántico Occidental.

La presencia y extensión de los constructores arrecifales están estrechamente vinculadas a factores como la disponibilidad y tipo de sustrato, así como la dinámica del agua local. Lugares con un alto desarrollo relativo, como La Pared, Jardines, La Bocana, Cuevones, La Bonanza, y otros, contrastan significativamente con áreas someras más uniformes que predominan en gran parte del arrecife de Puerto Morelos, Tanchacté y Limones (Carabias et al., 2000).

En la mayor parte del parque nacional, la costa está conformada por playas de arena calcárea, de longitud limitada, que se clasifican como costa secundaria debido a su formación exclusivamente por procesos marinos, con dunas estabilizadoras de 4 a 6 metros de altura. Solo en lugares aislados como Punta Caracol, la costa está compuesta por roca calcárea (Chávez, 2009).

La laguna, que se extiende desde aproximadamente 60 metros en Punta Nizuc hasta casi 2.5 kilómetros en La Bonanza, es más ancha en general al norte de Punta Tanchacté (entre 2,000 y 3,000 metros) que al sur (entre 100 y 1,200 metros). Su profundidad varía entre 2 y 8 metros, con un lecho principalmente cubierto de arena calcárea, estabilizada por praderas de pastos marinos. Entre Punta Tanchacté y Punta Petempich, la laguna es somera y corta, dando paso rápidamente a la plataforma arrecifal (Chávez, 2009).

La zona Oeste, situada entre la laguna y la cresta arrecifal, se encuentra sobre una plataforma estrecha, con una extensión que oscila entre 50 y 200 metros y una profundidad de 1 a 3 metros. En esta área, la presencia de abundantes colonias de coral contribuye a una mayor rugosidad del fondo (Jordán, 1979).

Más allá del arrecife Oeste, se encuentra la cresta arrecifal, que representa la parte más superficial del arrecife y donde las olas rompen en condiciones normales. Esta zona divide el arrecife en dos entornos principales: uno protegido a sotavento (zona Oeste) y otro expuesto a barlovento (zona Este). La zona Este presenta un fondo calcáreo relativamente liso, que desciende suavemente perpendicular a la barrera arrecifal (Jordán, 1979).

Tanchacté se describe como un arrecife marginal, con pequeños bajos sucesivos separados entre sí por hasta 900 metros. Se encuentra a 26 kilómetros al sur de Cancún, con una laguna somera que da paso rápidamente a la plataforma arrecifal y a la formación de un pequeño islote calcáreo en el margen exterior. Donde la barrera es discontinua, la laguna tiene entre 3 y 4 metros de profundidad (Carabias et al., 2000).

El arrecife de Puerto Morelos, también de tipo marginal, comienza justo frente al puerto del mismo nombre y se extiende hacia el norte por aproximadamente 2 kilómetros. Se ubica a 30 kilómetros al sur de Cancún, en una terraza que varía entre 0 y 25 metros de profundidad. En la orilla, hay dunas de 4 a 6 metros de altura y una playa estrecha de arena calcárea (Castañares, 1982; Carabias et al., 2000).

El arrecife de Tulum se encuentra en coordenadas 20° 12′ 53″ de latitud N y 87° 25′ 06″ de longitud O. Clasificado como marginal, se forma cerca de la costa y se caracteriza por una barrera profunda con una plataforma corta o inexistente, con profundidades entre 2 y 4 metros. La extensión del arrecife posterior en Tulum es limitada en comparación con otras áreas del Caribe mexicano, y la turbidez y agitación son significativamente más altas aquí en relación con otras ubicaciones cercanas (Salazar-Vallejo et al., 1993).

El arrecife en la reserva de la biosfera de Sian Ka'an se extiende a lo largo de 110 kilómetros con un desarrollo variable en la costa. Las aguas circundantes tienen bajos niveles de nutrientes y alta transparencia, permitiendo una excelente penetración de la luz hasta aproximadamente 70 metros de profundidad, con una temperatura promedio del agua entre 25 y 30.5 grados Celsius. Los arrecifes bordeantes de Sian Ka'an muestran una zonación similar al patrón típico del Caribe, que incluye una laguna arrecifal, una cresta arrecifal y el arrecife frontal (Carabias et al., 2000).

6.2 Trabajo de campo (Recolección de muestras)

Se seleccionaron diferentes sitios (Tabla 1) de estudio dentro del Caribe mexicano, que se definieron de acuerdo con los programas de monitoreo y los proyectos de investigación en curso (Álvarez-Filip, 2019). Con ayuda de inmersiones marinas por parte del equipo de la UNAM de Álvarez-Filip y Anastasia Banazak se obtuvieron los fragmentos de coral (2 cm²), los cuales se almacenaron en RNAlater y se mantuvieron en tubos eppendorf de 1.5 ml a -4°C.

Nombre del sitio	Número de muestras
Manchones	11
Tanchacte	49
Ojo de Agua	11
Cuevitas/Dreams	20
Sian Kaán	10
Jardines	16
Bocana	17

 Tabla 1. Número de muestras por sitio de muestreo.

6.3 Trabajo de laboratorio

Se procesaron entre 0.2 y 0.5 mg de tejido usando el método de extracción por Kit en columna de DNeasy[®] de Sangre y Tejido Qiagen [®]. Se realizaron pequeñas modificaciones para mejorar la cantidad y calidad de extracción de DNA siguiendo estudios comparativos de métodos de extracción (Ghafari & Litaay 2023); se usó únicamente 10 µl de proteínasa K, no se vortexearon los tubos y solo se mezclaron por inversión. Posteriormente se dejó toda una noche incubando el tejido con 180 µl de buffer ATL y la proteinasa K (10 mg/ml).

El ADN de las 146 muestras de tejido de *Pseudodiploria strigosa* fue cuantificado por espectrofotometría (Nanodrop) y posteriormente por fluorometría con Qubit 4 (Thermo Scientific[®]) para evaluar la calidad (Anexo G). Posteriormente, se evaluó la calidad del ADN mediante electroforesis en gel de agarosa-synergel al 1% utilizando 5 µl de cada muestra, se

empleó UV como intercalante para su visualización en un fotodocumentador ChemiDoc™ (Bio-Rad).

Posteriormente se eliminaron aquellas muestras que no pasaran dos criterios necesarios. El primer criterio consistió en cumplir la cantidad mínima de ADN para obtener 100-200 ng totales para la elaboración de las librerías genómicas. El según filtro consistió en revisar los geles de extracción y observar la amplificación necesaria, así como la presencia de contaminantes u otras bandas que no pertenecieran al ADN de interés. Una vez realizada la selección de muestras que cumplían con los estándares de cantidad y calidad se obtuvo un total de 136 muestras (Anexo G).

6.4 Elaboración de librerías

La elaboración de las librerías se realizó mediante la técnica de Secuenciación de ADN Asociado a la Restricción de Doble Digestión (dd-RADseq por sus siglas en inglés), descrita por Peterson et al. (2012).

Se digirió el material genómico, previamente extraído, con dos enzimas de restricción, EcoRI-HF (5'-G/AATTC-3') y Mspl (5'-C/CGG-3'), para obtener fragmentos de un tamaño especifico (320-520 pb). Cada reacción de digestión se llevó a cabo en un volumen total de 30 µl, conteniendo un mínimo de 100 ng de ADN, 10 U totales de cada enzima de restricción, 1X Buffer CutSmart[®] (Acetato de Potasio 50 mM, Tris-acetato 20mM, Acetato de Magnesio 10 mM, BSA 100 µg/ml, pH 7.9) y 0.1X buffer TE (Tris-HCl 10 mM ph 8.0, EDTA 0.1 mM). La reacción se llevó a cabo a temperatura ambiente por doce horas para asegurar la digestión del material genético. Purificación de ADN con perlas Los productos de la digestión se purificaron con 1.5X AMPure XP Beads (Beckaman Coulther[®]), realizándose dos lavados con 150 µl etanol grado molecular al 70% y siendo finalmente eluídos en 30 µl de 0.1X TE.

De acuerdo con la técnica de dd-RADseq (Peterson et al., 2012), se emplearon dos diferentes adaptadores denominados P1 y P2. El adaptador P1 es complementario al corte de la enzima

EcoRI y contiene una secuencia corta de ADN llamada barcode (código de barra) que permite la identificación de los individuos dentro de un pool. El adaptador P2 es complementario al corte de la enzima MspI y se empleó para todos los individuos. La ligación de los adaptadores a los fragmentos de ADN se realizó en reacciones con un volumen total de 40 µl dentro de los cuales se incluyen: ADN previamente digerido (100-200 ng) y purificado, 2 µM de Adaptador P1 y 1X Master Mix de Ligación (1X Buffer T4 Ligasa, 100 U T4 ADN Ligasa, 0.1 µM Adaptador P2).

La reacción fue incubada toda una noche a temperatura ambiente. Una vez ligados los adaptadores, se realizó una segunda purificación con perlas, para eliminar los adaptadores no ligados, siguiendo el protocolo de Petersón et al., 2012. Para corroborar que la ligación fue exitosa, se llevó a cabo una reacción en cadena de la polimerasa (Polymerase Chain Reaction, PCR por sus siglas en inglés) utilizando los iniciadores Primer Illumina Forward: PCR1 (5'-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACG-3') y Primer Illumina Reverse: PCR2_Idx_1_ATCACG(5'CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCAGACGTGT GC-3'). Las reacciones de PCR se llevaron a cabo en un volumen final de 12.5 µl que contiene 1 µl de ADN ligado purificado, 1X de ADN Polimerasa GoTaq[®] (1X Buffer Green GoTaq[®] pH 8.5, dNTPs 200 µM, MgCl2 1.5 µM) y 0.8 mM de cada primer. El programa de PCR se llevó a cabo en un termociclador Biorad T100 bajo las siguientes condiciones: 94 °C, 2 min (1 ciclo), 94 °C por 30s, 60 °C por 30s, 72 °C por 45s (20 ciclos) y un ciclo a 72 °C por 10 min. Los productos de PCR se visualizaron en gel de agarosa-synergel al 2% utilizando 5 µl por cada muestra. El gel fue cargado con intercalante UV para su visualización en un fotodocumentador ChemiDoc™ (Bio-Rad). Posteriormente los productos purificados de la ligación se cuantificaron en Qubit 4 (Thermo Scientific®) y se prepararon pools equimolares de 48 individuos usando 10 ng de ADN de cada individuo. Posteriormente, se llevó a cabo una purificación con perlas para concentrar cada pool, usando una proporción de 1.5X AMPure XP Beads con respecto al volumen del pool, llevando a cabo un solo lavado con 500 µl de etanol al 80% y eluyendo en 30 µl de 0.1X TE. De cada pool se seleccionaron aquellos con fragmentos de 320-520 pb ± 50 mediante Pippin Prep™ (Sage Science). Se realizó el enriquecimiento de fragmentos y adición de índex Para diferenciar entre pools (Tabla 2).

Secuencia de los índex de cada pool		
Pool 1	ldx_1_ATCACG	
Pool 2	ldx_2_CGATGT	
Pool 3	ldx_3_TTAGGC	

La reacción de PCR se llevó a cabo en un volumen final de 20 µl por reacción, conteniendo: 4 ul ADN de pool previamente purificado, 1X Buffer Phusion HF, 0.4 µM dNTPs, 0.5 µM Primer Illumina F (PCR1), 0.5 µM Primer Illumina R y 0.5 U de polimerasa TAQ Phusion ADN polymerase (NEB®). Las condiciones de PCR consistieron en: 94 °C por 2 min (1 ciclo), 94 °C por 30s, 60 °C por 30s, 72 °C por 45s (13 ciclos). Los productos de amplificación se purificaron con AMPure XP Beads y los productos purificados se separaron por electroforesis en gel de agarosa al 2% utilizando 5 µl de cada muestra, posteriormente fue empleó intercalante UV para visualizarlo en un fotodocumentador ChemiDoc™ (Bio-Rad). Los pools enriquecidos fueron cuantificados con Qubit 4 (Thermo Scientific®) para combinarlos a una concentración de ~0.5 ng/µl, dando lugar a la librería final. Esta librería se concentró nuevamente utilizando perlas AMPure XP Beads en una proporción 1.5X con respecto al volumen de la librería final, se realizaron dos lavados con etanol al 70% para finalmente eluir en un volumen de 30 µl de 0.1X TE. Las librerías finales fueron enviadas a Novogene® (Sacramento, EUA) para ser secuenciadas en un secuenciador Illumina Hiseq-X con lecturas pareadas de 150 pb.

6.5 Bioinformática

Las secuencias crudas fueron filtradas con el pipeline Stacks 2.2 (Catchen et al. 2013), para la identificación de marcadores SNPs y la construcción de loci a partir de secuencias cortas. *Stacks* está diseñado para procesar datos que *se apilan* juntos. Principalmente, esto consiste en ADN digerido con enzimas de restricción. El objetivo de *Stacks* es ensamblar loci en un gran número de individuos en una población o cruce genético, llamar SNP dentro de esos loci y luego

leer los haplotipos de ellos. Por lo tanto, *Stacks* requiere datos que tengan una longitud uniforme, con una cobertura lo suficientemente alta como para llamar con confianza a los SNP.

Para asegurarse de que las lecturas finales contengan solo ADN de coral y no el de los dinoflagelados endosimbióticos (Symbiodinaceae), se utilizaron genomas disponibles de los simbiontes para filtrar las lecturas amplificadas de cada uno de los géneros Symbiodinium microadriacticum (Aranda et al., 2016), Breviolum minutum, Cladocopium goreaui y Durusdinium trenchii (Adhesión al NCBI GCA_003297005.1, GCA 000507305.1, GCA_003297045.1, PRJDB10306) usando el alineador de secuencia Bowtie2 (Langmead y Salzberg 2012), separando las lecturas no alineadas de aquellas que se alinearon con la referencia de Symbiodiniaceae. Posteriormente las lecturas se alinearán con la referencia de Symbiodiniaceae y se volverán a alinear con una database de varios corales (Beavers, 2023), un genoma de M. cavernosa (Rippe et al., 2021) y Orbicella faveolata (Rippe et al., 2017) filtrando las lecturas que se asignaron a las referencias de algas y corales, lo que resultó en lecturas que se alinearon exclusivamente con el concatenado del hospedero (corales) o el metagenoma de Symbiodiniaceae para análisis posteriores. Al final se utilizaron recuentos de alineaciones para el simbionte, el hospedero y otros organismos no identificados.

Debido a que no poseemos un genoma de referencia se llevó a cabo el ensablaje de novo. Un análisis *de novo* en *Stacks* procede en seis etapas principales. Primero, el programa process_radtags demultiplexa y limpia las lecturas. Las siguientes tres etapas comprenden la tubería principal *de Stacks*: construir loci (ustacks), crear el catálogo de loci (cstacks) y compararlo con el catálogo (sstacks). En la quinta etapa, se ejecuta el programa gstacks para ensamblar y fusionar contigs de extremos pareados, llamar a sitios variantes en la población y genotipos en cada muestra. En la etapa final, las poblaciones se ejecutan en el programa, que puede filtrar datos, calcular estadísticas de genética de poblaciones y exportar una variedad de formatos de datos.

Process_radtags que reconoce la secuencia barcode en cada fragmento y las agrupa de acuerdo con el individuo al que pertenecen. Simultáneamente, se eliminan las secuencias de baja calidad.

Las lecturas que fueron inicialmente demultiplexadas se filtraron aún más por calidad utilizando fastq_quality_filter en FASTX-Toolkit v0.0.14 (\geq 90% de las bases con puntuaciones de calidad Phred \geq 25; Gordon y Hannon 2010).

Una vez que las secuencias se ordenan por muestra, se lleva a cabo la detección de alelos y ensamble de loci utilizando el programa denovo map.pl, que no requiere un genoma de referencia. El programa se divide en cinco componentes que se ejecutan de manera individual, los primeros dos están controlados por parámetros que requieren ser optimizados para cada conjunto de datos en específico. El primer componente (ustacks) se encarga de la identificación de SNPs y construcción de loci a nivel de los individuos y está regido por dos parámetros principales, el parámetro –m corresponde a la profundidad de cobertura y nos indica el número de secuencias idénticas que se requieren para formar los alelos putativos, mientras que el parámetro -M hace referencia al número máximo de diferencias puntuales permisibles entre dos alelos para conformar un loci putativo. Para este trabajó se asignó un valor de -m = 3 y diferentes combinaciones de -M = 2-4. El segundo componente (cstacks) crea un catálogo que incluye los alelos y loci presentes en toda la población de acuerdo con lo detectado en las muestras individuales. Para esto, se especifica mediante el parámetro –n, el cual, es el número de diferencias puntuales permisibles entre las secuencias de dos individuos para ser consideradas parte de este loci en la población. Se empleó la regla n = M+2, para cada valor de -M probado.

El filtrado de loci se llevó a cabo con el módulo -populations filtra los loci en función de diversos parámetros poblacionales. En este caso se -p se refiere al número de localidades donde debe estar presente el locus, se probaron valores desde 7 a 3. El parámetro -r establece el porcentaje
de individuos donde debe estar presente el locus se emplearon valores de r = 0.8 a 0.1, la frecuencia del alelo menor se dejó -min_maf = 0.03 fija.

Р	r	min_maf
P7	0.8	0.03
P6	0.8	0.03
P2	0.8	0.03
P4	0.5	0.03
Р3	0.5	0.03
P4	0.3	0.03
Р3	0.1	0.03

Tabla 3. Valores de los parámetros de filtrado con el módulo populations del programa stacks.

6.6 Secuenciación Sanger

La secuenciación Sanger se ha utilizado para analizar regiones específicas del genoma que muestran variabilidad entre individuos dentro de una población. Estos estudios pueden revelar polimorfismos. Se ha utilizado la secuenciación Sanger para secuenciar fragmentos específicos de ADN que contienen regiones de interés. Esto se hace ampliamente en estudios de asociación genética y genotipado de polimorfismos (Sanger, 1975; Catmull *et al., 1998;* Chiou et al., 2008 Gutiérrez, 2022; Schwartz et al., 2012; Severance et al., 2004).

Se utilizaron los marcadores *Pax-C* (418 pb) y *MaSC-1 (490 pb)*. El primero *se dirige a los intrones ubicados dentro de la proteína Pax y* (Catmull *et al., 1998;* Chiou et al., 2008), mientras que *MaSC-1* es una región anónima secuenciada originalmente en *Montastraea annularis* (Severance et al., 2004), que además se ha utilizado en estudios taxonómicos de varias especies de corales incluyendo *Pseudodiploria strigosa* y *Pseudodiploria clivosa* (Schwartz et al., 2012).

Posteriormente se llevó a cabo la cadena en reacción de la Polimerasa bajo las siguientes, condiciones: 1 μ l de ADN genómico diluido con una mezcla maestra de PCR de 12.5 μ l que consta de: 1 μ l de cada cebador (Fordware y Reverse; 0.8 mM), 1.25 μ l de PCR Buffer (1x), 0.37

 μ l de MgCl ₂ (1.5 mM), 0.25 de dNTPs (0.2 mM), 0.05 μ l de Taq polimerasa (1 u/μl), 7.08 μ l de H₂O y 0.5 μ l de BSA (4.1 x). Cada reacción se realizó a 95 °C durante 10 min, 30 ciclos de 94 °C por 30s, Ta por 40s y 72 °C por 1 min, con una extensión final de 72 °C por 10 minutos. Los productos de PCR purificados se secuenciaron en analizadores de ADN capilar para posteriormente analizar y editar los cromatogramas.

6.7 Diversidad genética

Una vez obtenidas las secuencias de ADN, estas fueron editadas y alineadas en el programa CodonCode Aligner V9.0.1 (CodonCode Aligner 2009).

La diversidad genética fue estimada mediante el número de haplotipos (H), diversidad nucleotídica (π), diversidad haplotípica y sitios segregantes (S) de los marcadores Pax-C y MaSC1, los cuales fueron estimados mediante el programa DnaSP V 6.12.03 (Librado y Rozas, 2009).

Se organizaron las muestras en grupos de acuerdo con el sitio, región, condición y año para estimar su diversidad genética.

Finalmente se graficaron las colonias que tenían un solo haplotipo y aquellas que tenían dos haplotipos identificando aquellas secuencias que tenían sitios variantes (alelos) sacando el porcentaje para conocer cuántos haplotipos se encontraban en las colonias de cada grupo clasificado. La identificación de los alelos se realizó mediante el programa Una vez obtenidas las secuencias de ADN, estas fueron editadas y alineadas en el programa CodonCode Aligner V9.0.1 (CodonCode Aligner 2009) y cuantificados en DnaSP V 6.12.03 (Librado y Rozas, 2009).

7. RESULTADOS

7.1 SNPs

El número total de lecturas retenidas que se obtuvo después de process radtags se redujo considerablemente para cada pool (Tabla 3).

# Pool	Lecturas retenidas	Baja calidad	Barcodes no encontrados	Sitio de corte RAD no encontrado	Total
Pool 1	279,353,625	45,933,146	71,53,084	17,285,999	349,725,854
Pool 2	147,707,452	31,180,502	8,991,052	51,863,110	239,742,116
Pool 3	1,301,474	559,000	275,930	938,278	3,074,682

Así mismo, se obtuvo un rango muy amplio de lecturas por individuo, desde 678 lecturas hasta 81, 847,350 lecturas por individuo (Fig. 2; Anexo H). Un grupo reducido de muestras obtuvieron la mayoría de las lecturas mientras que la mayoría de las muestras presentaron bajos rendimientos (Fig. 2; Anexo H).

Posteriormente en la limpieza y separación de las lecturas para diferenciar entre el simbionte, el hospedero y otros organismos, se obtuvo un total de lecturas finales que fueron desde 31 lecturas hasta 17, 400,299 lecturas por individuo, que corresponden únicamente al hospedero (Fig. 2 y 3; Anexo H).

Figura 2. Lecturas retenidas por individuo.

Figura 3. Lecturas alineadas con el simbionte.

Figura 4. Lecturas alineadas con el hospedero.

Finalmente, en la iteración de los parámetros principales seleccionados en denovo_map.pl se usaron los valores m = 3, M = 3, n = 5, construyendo en el ensamble de loci de novo un catálogo con 463,043 loci los cuales fueron filtrados con el módulo populations (Tabla 5). Se probaron diferentes combinaciones de parámetros de filtrado variando -*p* y -*r*. Al disminuir los valores del p se observa que no tiene un efecto en la obtención de loci compartidos entre las localidades de muestreo. También la disminución de r no contó con un efecto inclusive a valores de r = 0.3. Sin embargo, al disminuir a p = 3 y r = 0.1 se obtuvieron 1,377 SNPs, pero esto denota que no existen loci compartidos entre localidades e inclusive entre individuos de una misma localidad.

Р	r	min_maf	SNPs
P7	0.8	0.03	0
P6	0.8	0.03	0
P2	0.8	0.03	0
P4	0.5	0.03	1
Р3	0.5	0.03	1
P4	0.3	0.03	1
P3	0.1	0.03	1,377

Tabla 5. Obtención de loci filtrado de loci con el módulo populations.

7.2 Diversidad genética (marcadores mitocondriales y nucleares)

Para el análisis de la diversidad genética, se estimaron los valores de diversidad haplotípica y nucleotídica. Se obtuvieron un total de 84 secuencias de 415 pares de bases (pb) para el marcador Pax-C en *Pseudodiploria strigosa*, que dieron un total de 24 haplotipos únicos con una diversidad haplotípica de Hd=0.764 (Tabla 5). De las 45 secuencias obtenidas con 545 pb para el marcador MaSC1, se obtuvieron un total de 22 haplotipos y una diversidad haplotípica de Hd=0.918 (Tabla 5).

7.3 Diversidad genética por sitio

Para el marcador Pax-C, todas las localidades presentaron una diversidad haplotípica que varió desde 0.6 a 1, siendo Jardines (Hd=1) la localidad con la mayor diversidad haplotípica (Fig. 5).

Para el marcador MaSC1, las localidades presentaron una diversidad haplotípica que varió desde 0.6 a 1, siendo Dreams, Jardines y Sian Ka'an (Hd=1) las localidades con la mayor diversidad haplotípica (Fig. 5). Los valores de diversidad nucleotídica fueron muy bajos en todas las localidades, observándose valores no mayores a 0.0095 para el marcador Pax-C (Fig. 6), y no mayores a 0.0098 para el marcador MaSC1 (Fig. 6).

 Sitios de las muestras	N^1	C1H ²	C2H ³	Nseq ⁴	H⁵	Hd ⁶	± S.D. ⁷	π ⁸	± S.D. ⁷
Manchones Norte	4	2	2	6	3	0.6	0.21	0.0032	0.0015
Tanchacte	21	4	17	38	15	0.7	0.06	0.0063	0.0009
Bocana	4	0	4	8	5	0.786	0.15	0.0047	0.0014
Jardines	1	0	1	2	2	1	0.25	0.0073	0.0036
Cuevitas	8	3	5	13	6	0.8	0.08	0.0095	0.0017
 Sian Ka'an	11	4	7	18	7	0.7	0.10	0.0054	0.0010
Todos	48	13	35	84	24	0.7	0.04	0.0064	0.0007

Tabla 6. Diversidad genética por sitio para el gen Pax-C.

¹N=Número de muestras, ²C1H =Número de colonias con 1 Haplotipo, ³C2H= Número de colonias con 2 Haplotipos, ⁴Nseq= Número de muestras, ⁵H=Número de haplotipos, ⁶Hd= Diversidad haplotípica, ⁷SD= desviación estándar, ⁸ π = Diversidad nucleotídica.

Sitios de las muestras	N^1	$C1H^2$	C2H ³	Nseq ⁴	H⁵	Hd ⁶	± S.D. ⁷	π ⁸	± S.D. ⁷
Manchones Norte	2	1	1	3	2	0.6	0.31	0.0133	0.0063
Tanchacte	20	13	7	27	11	0.8	0.04	0.0079	0.0007
Ojo de Agua	1	1	0	1	1	0	0	0	0
Bocana	0	0	0	0	0	0	0	0	0
Jardines	1	0	1	2	2	1	0.5	0.0044	0.0022
Cuevitas	3	2	1	4	4	1	0.17	0.0078	0.0018
Sian Ka'an	5	2	3	8	8	1	0.06	0.0098	0.0013
Todos	32	19	13	45	22	0.9	0.02	0.0088	0.0007

Tabla 7. Diversidad genética por sitio para el gen MaSC1.

Figura 5. Diversidad haplotípica por sitio.

Figura 6. Diversidad nucleotídica por sitio.

Para el marcador Pax-C, los sitios de Manchones Norte, Tanchacte, Cuevitas y Sian Ka'an presentaron muestras con un solo haplotipo con un 50%, 19%, 37% y 36% respectivamente. Por otro lado, todos estos sitios además de Bocana y Jardines presentaron un porcentaje igual o mayor al 50% de las muestras con dos haplotipos, lo que denota que en todos los sitios hay una gran presencia de muestras con más de un haplotipo (Fig. 7).

Para el marcador MaSC1, los sitios, los sitios de Manchones Norte, Tanchacte, y Sian Ka'an presentaron muestras con un solo haplotipo con un 50%, 65% y 40% respectivamente. Todos esos mismos sitios presentaron un porcentaje igual o mayor al 50% de las muestras con dos haplotipos, a excepción de Tanchacte (únicamente 35% de las muestras con dos haplotipos) y Ojo de agua, sitio con el 100% de las muestras con un solo haplotipo (Fig. 7).

Figura 7. Porcentaje de muestras con un solo Haplotipo (H1) y dos Haplotipos (H2). N= Número de muestras.

7.4 Diversidad genética por región

La diversidad haplotípica en todas las regiones y para ambos marcadores fue mayor a 0.7, mientras que la diversidad nucleotídica no fue mayor a 0.0095 para ambos marcadores (Tabla 8 y 9). La región de Puerto Morelos presentó mayor porcentaje de muestras con dos haplotipos para el marcador Pax-C y por un solo haplotipo para el marcador MaSC1 (Fig. 8). Para la zona de Tulum, estuvo mayormente representada por muestras con dos haplotipos, tanto para el marcador Pax-C como para el marcador MaSC1 (Fig. 8). Finalmente, para la zona de Sian Ka'an las muestras presentaron mayor porcentaje de muestras con un solo haplotipo (Fig. 8).

Región	N^1	C1H ²	C2H ³	Nseq ⁴	H⁵	Hd ⁶	± S.D. ⁷	π ⁸	± S.D. ⁷
Puerto Morelos	30	6	24	53	17	0.7	0.06	0.0055	0.0007
Tulum	8	3	5	13	6	0.8	0.08	0.0095	0.0017
Sian Kaán	11	4	7	18	7	0.7	0.1	0.0054	0.001
Todos	49	13	36	84	24	0.7	0.04	0.0064	0.0007

Tabla 8. Diversidad genética por regiones (Pax-C).

Región	N^1	C1H ²	C2H ³	Nseq ⁴	H⁵	Hd ⁶	± S.D. ⁷	π ⁸	± S.D. ⁷
Puerto Morelos	24	15	9	33	13	0.8	0.04	0.0085	0.0008
Tulum	3	2	1	4	4	1	0.17	0.0078	0.0018
Sian Kaán	5	2	3	8	8	1	0.06	0.0098	0.0013
Todos	32	19	13	45	22	0.9	0.02	0.0088	0.0007

Tabla 9. Diversidad genética por regiones (MaSC1).

Figura 8. Porcentaje de muestras con un solo haplotipo (H1) y con dos haplotipos (H2). N= Número de muestra

7.5 Diversidad genética por condición

La diversidad haplotípica para ambos marcadores presentó valores mayores a 0.7 mientras que la nucleotídica no fue mayor a 0.0088 (Tabla 9).

En la comparación de las muestras por condición entre ambos marcadores las muestras que se recolectaron como enfermas coincidieron en tener mayor porcentaje con un solo haplotipo, mientras que las sanas presentaron mayor porcentaje de muestras con dos haplotipos (Fig. 9).

Condición	N^1	C1H ²	C2H ³	Nseq ⁴	H⁵	Hd⁵	± S.D. ⁷	π ⁸	± S.D. ⁷
Enfermas	17	6	11	28	12	0.7	0.078	0.0066	0.0012
Sanas	31	6	25	56	20	0.7	0.06	0.0064	0.0009
Todos	48	12	36	84	24	0.7	0.04	0.0064	0.0007

Tabla 10. Diversidad genética por condición (Pax-C).

¹N=Número de muestras, ²C1H =Número de colonias con 1 Haplotipo, ³C2H= Número de colonias con 2 Haplotipos, ⁴Nseq= Número de muestras, ⁵H=Número de haplotipos, ⁶Hd= Diversidad haplotípica, ⁷SD= desviación estándar, ⁸ π = Diversidad nucleotídica.

Condición	N ¹	C1H ²	C2H ³	Nseq ⁴	H⁵	Hd ⁶	± S.D. ⁷	π ⁸	± S.D. ⁷
Enfermas	15	11	4	19	10	0.895	0.048	0.0087	0.001
Sanas	17	8	9	26	16	0.92	0.041	0.0086	0.001
Todos	32	19	13	45	22	0.918	0.028	0.0088	0.0007

Tabla 11. Diversidad genética por condición (MaSC1).

Figura 9. Porcentaje de muestras con un solo haplotipo (H1) y con dos haplotipos (H2). N= Número de muestras.

7.6 Diversidad genética por año

Para todas las regiones, con ambos marcadores se observó en todos los años una diversidad haplotípica mayor a 0.7 y nucleotídica no mayor a 0.0075 (Tabla 11).

En cuanto a la cantidad de muestras con uno o dos haplotipos, se observó con el marcador Pax-C un mayor porcentaje de muestras con dos haplotipos (Fig. 10).

Por otro lado, con el marcador MaSC se observó un gran porcentaje de muestras con un solo haplotipo para el año 2019, 2020 y 2021, exceptuando el 2022, que presentó el 100% de las muestras con dos haplotipos (Fig. 10).

Año	N^1	C1H ²	C2H ³	Nseq ⁴	H⁵	Hd ⁶	± S.D. ⁷	π ⁸	± S.D. ⁷
2019	12	2	10	22	9	0.7	0.09	0.0050	0.0011
2020	2	0	2	4	3	0.8	0.22	0.0061	0.0021
2021	32	14	18	50	18	0.7	0.05	0.0075	0.0010
2022	4	0	4	8	5	0.7	0.15	0.0047	0.0014
Todos	50	16	34	84	24	0.7	0.04	0.0064	0.0007

Tabla 12. Diversidad genética por año (Pax-C).

¹N=Número de muestras, ²C1H =Número de colonias con 1 Haplotipo, ³C2H= Número de colonias con 2 Haplotipos, ⁴Nseq= Número de muestras, ⁵H=Número de haplotipos, ⁶Hd= Diversidad haplotípica, ⁷SD= desviación estándar, ⁸ π = Diversidad nucleotídica.

Año	N^1	C1H ²	C2H ³	Nseq ⁴	H⁵	Hd ⁶	± S.D. ⁷	π ⁸	± S.D. ⁷
2019	11	5	6	17	10	0.9	0.02	0.0105	0.0008
2020	3	3	0	3	2	0.6	0.31	0.0044	0.0021
2021	17	11	6	23	14	0.9	0.05	0.0072	0.0008
2022	1	0	1	2	2	1	0.50	0.0044	0.0022
Todos	32	19	13	45	22	0.9	0.02	0.0088	0.0007

Tabla 13. Diversidad genética por año (MaSC1).

Figura 10. Porcentaje de muestras con un solo haplotipo (H1) y con dos haplotipos (H2). N=Número de muestras.

7.7 Diversidad genética por año (Puerto Morelos)

Para la región de Puerto Morelos se observó en todos los años una diversidad haplotípica mayor a 0.5 mientras que la haplotípica no fue mayor a 0.0061 (Tabla 13).

En cuanto a la cantidad de muestras con uno o dos haplotipos, se observó con el marcador Pax-C un mayor porcentaje de muestras con dos haplotipos (Fig. 11).

Por otro lado, con el marcador MaSC se observó un mayor porcentaje de muestras con un solo haplotipo (Fig. 11).

Año	N^1	C1H ²	C2H ³	Nseq ⁴	H⁵	Hd⁵	± S.D. ⁷	π ⁸	± S.D. ⁷
2019	9	2	7	16	7	0.6	0.12	0.0049	0.0013
2020	2	0	2	4	3	0.8	0.22	0.0061	0.0021
2021	14	3	11	25	12	0.8	0.07	0.0061	0.0010
2022	4	0	4	8	5	0.7	0.15	0.0047	0.0014
Todos	29	5	24	53	17	0.7	0.06	0.0055	0.0007

Tabla 14. Diversidad genética por año, Puerto Morelos (Pax-C).

¹N=Número de muestras, ²C1H =Número de colonias con 1 Haplotipo, ³C2H= Número de colonias con 2 Haplotipos, ⁴Nseq= Número de muestras, ⁵H=Número de haplotipos, ⁶Hd= Diversidad haplotípica, ⁷SD= desviación estándar, ⁸ π = Diversidad nucleotídica.

Diversidad genética por año, Puerto Morelos (MaSC1)									
Año	N^1	C1H ²	C2H ³	Nseq ⁴	H⁵	Hd ⁶	± S.D. ⁷	π ⁸	± S.D. ⁷
2019	9	4	5	14	8	0.9	0.03	0.010	0.0010
2020	3	3	0	3	2	0.6	0.31	0	0.0021
2021	11	8	3	14	7	0.7	0.11	0.0050	0.0009
2022	2	2	0	2	2	1	0.50	0.0044	0.0022
Todos	25	17	8	33	13	0.881	0.041	0.00855	0.0008

Tabla 15. Diversidad genética por año, Puerto Morelos (MaSC1).

Figura 11. Porcentaje de muestras con un solo haplotipo (H1) y con dos haplotipos (H2). N= Número de muestras.

8. DISCUSIÓN

El presente estudio representa una de las primeras investigaciones sobre la diversidad genética de *Pseudodiploria strigosa* en el Caribe mexicano lo que destaca su importancia para poder plantear planes de conservación con mejores estrategias. Además, es de los primeros trabajos en dicha región en usar las herramientas más modernas para el análisis de secuencias genéticas, empleando el método ddRAD (Peterson et al., 2012) debido a que facilita la investigación de organismos no modelo analizando una gran cantidad de loci en tiempo relativamente breve.

8.1 Diversidad genética con ddrad-seq

En cuanto al proceso de ensamblaje se ha observado que es importante explorar un rango de valores para los parámetros clave y luego trazar las métricas de ensamblaje esenciales obtenidas de los archivos de salida de Stacks para analizar y tomar una decisión fundamentada sobre los conjuntos óptimos de parámetros para los datos analizados (Paris et al., 2017).

Para la construcción de loci denovo se debe hacer una cuidadosa selección de los distintos parámetros a usar en denovo_map (-m, -M y -n). En la mayoría de los estudios de diversidad genética para especies marinas utilizan diversos valores de -M2 -m3 -n2 reteniendo miles de SNPs (Catchen et al., 2017; Miller et al., 2016; Rochette et al., 2019). En este trabajo se realizaron iteraciones hasta obtener una combinación que nos permitiera obtener la mayor cantidad de SNPs sin caer en el error de recuperar lecturas que sesgaran nuestros resultados. Debido al conocimiento de las pocas lecturas por individuo que se retuvieron no usamos parámetros tan estrictos para no perder lecturas ni obtener un nivel tan bajo en la detección de loci, los parámetros de ensable utilizados fueron M = 2, m = 3, n=5.

Las lecturas se agrupan en alelos putativos controlados por el parámetro m, luego se comparan y colapsan en loci controlados por M. Posteriormente, las lecturas secundarias se alinean con los loci ensamblados para aumentar la profundidad del locus, seguido de la evaluación de SNP basada en la evidencia estadística de cobertura y errores presentes. Finalmente, se forman catálogos de loci para toda la población, donde las secuencias similares se agrupan en un único

locus, regulado por el parámetro n en cstacks (Paris et al., 2017). Se ha demostrado que, en conjuntos de datos, la profundidad del Stack mejora con valores crecientes de m, y que después de fusionar supuestos alelos en loci, la profundidad aumenta. Con un valor de m1, cada lectura sin procesar se trata como un alelo putativo y, por lo tanto, aumenta la cantidad de loci ensamblados. Cuando se ha aumentado de m1 a m2, el número promedio de loci formados disminuye drásticamente. Sin embargo, en algunos conjuntos de datos donde se ensamblaron aproximadamente un 50 % más de loci en m=1 en comparación con m=2 y se presentan muchas lecturas únicas, se ha reportado que puede deberse a una gran cantidad de PCR o a errores de secuenciación (Paris et al., 2017; Martínez 2020).

Se ha sugerido que M es particularmente específico del conjunto de datos porque depende de los niveles naturales de polimorfismo en la especie, así como de la cantidad de error generado durante la preparación y secuenciación de las bibliotecas RAD-seq. Se ha observado un fuerte aumento en el número de SNP obtenidos al aumentar M. Así mismo se ha resaltado la eficacia de la regla r80, que utiliza loci polimórficos presentes en al menos el 80% de las muestras como objetivo de optimización (Paris et al., 2017). Sin embargo, este tipo de parámetros se adecuará a los objetivos de estudio y al conocimiento particular de los datos. En nuestro estudio fue difícil manejar parámetros tan robustos debido a la calidad y cantidad de los datos que se obtuvieron, lo que era de esperarse al observar valores bajos desde la extracción de ADN (40 ng/ µl) a comparación de otros estudios en corales escleractinios donde han obtenido hasta 500 ng/µl (Ghafari y Litaay 2023). Sin embargo, la diferencia, no recae en el método de extracción, por lo que se sugiere que es el método de preservación lo que ocasiono la degradación del material genético. El contar con DNA de baja integridad impacta directamente en la cantidad de sitios homólogos entre muestras, ya que al momento de llevar a cabo la digestión del DNA, los fragmentos obtenidos.

Lo anterior fue reflejado al momento de filtrar los loci en específico los parámetros para establecer el número mínimo de poblaciones en las que debe estar presenten un locus para procesarlo (-p) y el porcentaje mínimo de individuos en una población necesarios para procesar un locus (-r) se han mencionado como parte secundaria de la parametrización (Paris et al., 2017; Martínez 2020). A partir de catálogo de loci ensamblados resultaron 463,043 loci, sin embargo al filtrar con base a la variación común entre las localidades -p, cuando se establece que la presencia del locus esté presente en el 100% (p = 7) e inclusive en el 28% (p = 2) el 80% de los individuos no se recuperó ningún loci. Esto indica que no hay variantes genéticas compartidas entre las localidades. Asimismo, cuando se disminuye el porcentaje de individuos donde debe estar presente el loci (-r) a r = 0.5, se recupera un loci. Finalmente, cuando se emplea p = 3 y r= 0.3 se recuperan 1,377 SNPs. Sin embargo, este número de SNPs solo son compartidos entre muy pocos individuos y localidades. Este efecto, se relaciona directamente con la baja integridad de ADN recuperado y se refleja en el bajo número de sitios homólogos recuperados con Stacks al momento de filtrar la información.

Debido a la baja homología recuperada no se pudo realizar un análisis de diversidad genética entre localidades e individuos vía ddRAD.

8.2 Diversidad genética marcadores mitocondriales y nucleares

Se ha reportado que, en especies marinas, incluyendo especies de corales, los valores mayores a Hd=0.5 se consideran una diversidad genética alta (Grant y Bowen,1998; Otwoma y Kochzius, 2016; Sotelo 2017), lo que se observó en todos los sitios, regiones, condiciones y años.

Por otro lado, se ha reportado que la combinación de una alta diversidad haplotípica en conjunto con la baja diversidad nucleotídica se debe a una variedad de haplotipos separados por unos pocos nucleótidos. Dicho fenómeno se ha observado en poblaciones que han experimentado un estrechamiento del número de individuos seguido por un posterior crecimiento poblacional que, con el transcurso del tiempo, ha alcanzado una estabilización (Micael, et al. 2014; Otwoma y Kochzius, 2016). Este incremento en la población podría mitigar el impacto de la deriva genética, favoreciendo así la preservación de una amplia diversidad de haplotipos, sin que ninguno de ellos se fije en particular (García-Cisneros, et al. 2016). Este

fenómeno podría estarse manifestando debido a las amenazas que han afectado a la especie y a el mantenimiento de la población debido a su alta dispersión y tipo de reproducción.

Es conocido que el ADNmt posee altas tasas de mutación en muchos vertebrados e invertebrados, sin embargo, en escleractinios presenta poca variabilidad en la mayoría de las especies (Shearer et al., 2002). La baja tasa de mutación mitocondrial podría estar relacionada a la importancia funcional de las mitocondrias en los corales. La calcificación de los corales depende estrechamente de la simbiosis con las algas zooxantelas, relación que demanda una gran cantidad de energía provista por las mitocondrias (Iglesias-Prieto, 2007). Sin embargo, se han realizado estudios poblacionales en algunos corales (*Acropora cervicornis*) con genes mitocondriales con alta variabilidad (Concepcion et al., 2006; Ridgway, 2002). El estudio realizado por Vollmer y Palumbi (2007) utilizando ADNmt de, muestra altos valores de diversidad haplotípica (h=0.847) en la región control del ADNmt (D-loop). Por otro lado, Vollmer y Palumbi (2007) han encontrado poca variabilidad en especies de corales (*Acropora cervicornis*) para tres genes nucleares estructurales (MiniColageno, Calmodulina y PaxC) lo que coincide con lo obtenido en este estudio para *Pseudodiploria strigosa*.

9. CONCLUSIONES

La baja integridad del DNA resultó en una muy baja presencia de loci compartidos entre localidades ni entre individuos de una misma localidad en el área estudiada dentro del Caribe mexicano para *Pseudodiploria strigosa,* e impidiendo una evaluación de diversidad genética compartida.

Pseudodiploria strigosa presentó una diversidad haplotípica alta y una diversidad nucleotídica baja en todos los sitios, regiones, condiciones y años. Esto puede deberse a por un cuello de botella seguido de un crecimiento poblacional.

10. LITERATURA CITADA

- Alvarez-Filip, L., Estrada-Saldívar, N., Pérez-Cervantes, E., Molina-Hernández, A., y González-Barrios, F. J. (2019). A rapid spread of the stony coral tissue loss disease outbreak in the Mexican Caribbean. *PeerJ*, 7: e8069. <u>https://doi: 10.7717/peerj.8069.</u>
- Aranda, M., Li, Y., Liew, Y.J., Baumgarten, S., Simakov, O., Wilson, M.C., Piel, J., Ashoor, H., Bougouffa, S., Bajic, V.B., Ryu, T., Ravasi, T., Bayer, T., Micklem, G., Kim, H., Bhak, J., LaJeunesse, T.C., y Voolstra CR. (2016). Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle. *Scientific Reports*, 6(1): 39734. doi: https://doi.org/10.1038/srep39734.
- Barnes, R.D. (1974). Invertebrate Zoology. 3rd ed. Toppan Company, Australia, pp. 870.
- Barnes, R.S.K., Calow, P.P., Olive, P.J., Golding, D.W., y Spicer, J.I. (2009). *The invertebrates a synthesis*. 3rd ed., Australia, pp. 478.
- Bassim, K., & Sammarco, P. (2003). Effects of temperature and ammonium on larval development and survivorship in a scleractinian coral (*Diploria strigosa*). *Marine Biology*, 142: 241-252.
- Beavers, K.M., Van Buren, E.W., Rossin, A.M., Emery, M.A., Veglia, A.J., Karrick, C.E., and Mydlarz, L.D. (2023). Stony coral tissue loss disease induces transcriptional signatures of in situ degradation of dysfunctional *Symbiodiniaceae*. *Nature Communications*, 14(1): 2915. doi: <u>https://doi.org/10.1038/s41467-023-38612-4</u>.
- Bellwood, D.R., Hughes, T.P., Folke, C., y Nyström, M. (2004). Confronting the coral reef crisis. *Nature*, 429(6994): 827-833.doi: <u>https://doi.org/10.1038/nature02691.</u>
- Brusca, R., y Brusca, G. (2005). Filo Cnidarios (Cnidaria). *Invertebrados*. 2da edición. Editorial Interamericana, Madrid, España, pp. 237-292.
- Camacho-Vite, C., Estrada-Saldívar, N., Perez-Cervantes, E., y Alvarez-Filip, L. (2022). Differences in the progression rate of SCTLD in *Pseudodiploria strigosa* are related to colony size and morphology. *Frontiers in Marine Science*, 9: 790818. doi: <u>https://doi.org/10.3389/fmars.2022.790818.</u>
- Carabias, J., Provencio, E., de la Maza, J., Gutiérrez, D., y Gómez, M. (2000). *Programa de manejo del Parque Nacional Arrecife de Puerto Morelos*. Instituto Nacional de Ecología, México, D.F. pp. 225.
- Castañares, L.G. y L.A. Soto, 1982. Estudios sobre los corales escleractinios hermatípicos de la costa noreste de la Península de Yucatán, México. Parte I: Sinopsis taxonómica de 38 especies. (Cnidaria, Anthozoa, Scleractinia). *Anales del Instituto de Ciencias del Mar y Limnología, UNAM*, 9 (1): 295-344.
- Catchen, J., Hohenlohe, P.A., Bassham, S., Amores, A. y Cresko, W.A. (2013). Stacks: an analysis tool set for population genomics. *Molecular Ecology*, 22(11): 3124-3140. doi: <u>https://doi.org/10.1111/mec.12354.</u>
- Catmull J., Hayward, D.C., McIntyre, N.E., Reece-Hoyes, J.S., Mastro, R., Callaerts, P., Ball, E.E. y Miller, D.J. (1998). Pax-6 origins implications from the structure of two coral pax genes. *Development Genes and Evolution*, 208: 352-356. doi: 10.1007/s004270050191. PMID: 9716726.
- Cerca, J., Maurstad, M.F., Rochette, N.C., Rivera-Colón, A.G., Rayamajhi, N., Catchen, J.M., y Struck, T.H. (2021). Removing the bad apples: A simple bioinformatic method to improve loci-

recovery in de novo RADseq data for non-model organisms. *Methods in Ecology and Evolution*, *12*(5): 805-817. <u>https://doi.org/10.1111/2041-210X.13562</u>.

- Chávez Hidalgo, A. (2009). *Conectividad de los arrecifes coralinos del Golfo de México y Caribe mexicano. Tesis Doctoral.* Instituto Politécnico Nacional. Centro Interdisciplinario de Ciencias Marinas, CICIMAR. La Paz, Baja California Sur, México.
- Chávez, E. A., e Hidalgo, E. (1988). Los arrecifes coralinos del Caribe noroccidental y Golfo de México en el contexto socioeconómico. *Anales del Instituto de Ciencias del Mar y Limnología*, UNAM, (15)1: 167-176.
- Chiou, C.Y., Chen, I.P., Chen, C., Wu, H.J.L., Wei, N.V., Wallace, C.C., y Chen, C.A. (2008). Analysis of Acropora muricata calmodulin (CaM) indicates that scleractinian corals possess the ancestral Exon/Intron organization of the eumetazoan CaM gene. *Journal of Molecular Evolution*, 66(4): 317-24. doi: 10.1007/s00239-008-9084-6.
- CodonCode Corporation. (2009). CodonCode Aligner versión 3.5. Disponible en: <u>http://www.codoncode.com/</u>. [Consulta: 02 de febrero 2024].
- Colín-García, N.A., Campos, J.E., Tello-Musi, J.L., Chiappa-Carrara, X., Arena-Ortiz, M.L., Forsman, Z.H., y Arias-González, J.E. (2008). Morphological and genetic variability associated with environmental variation in two species of *Pseudodiploria* Fukami, Budd & Knowlton, 2012 (Cnidaria: Anthozoa: Scleractinia). *Marine Biodiversity*, 50(6). doi: 10.1007/s12526-020-01139-8.
- Domínguez-Maldonado, R. (2012). Estructura genética y análisis fenotípico del coral cuerno de alce Acropora palmata, en el Golfo de México y Caribe mexicano. Tesis de Maestría. Universidad Autónoma de Yucatán, Merida, Yucatán, México.
- Excoffier, L., y Lischer, H. (2006). An integrated software package for population genetics data analysis. Computational and Molecular Population Genetics Lab (CMPG), Institute of Zoology, University of Berne, Switzerland. Doi: doi/10.1177/117693430500100003.
- Foll, M., y Gaggiotti, O. (2008). A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. *Genetics*, 180(2): 977-993.
- Ghafari, M.I.A., Agus, R., y Litaay, M. (2023). Comparative evaluation of different established genomic extraction methods for scleractinian coral. *ASM Science Journal*, 18:1-9.
- Gordon A, Hannon G. (2010). Kit de herramientas FASTX. Herramientas de preprocesamiento de lecturas cortas FASTQ/A. <u>http://hannonlab.cshl.edu/fastx_toolkit/.</u>
- Grant, W. A. S., & Bowen, B. W. 1998. Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. *Journal of Heredity*, 89(5): 415-426.
- Hedrick, P.W. (2000). *Genetics of populations*. 4th ed. Jones and Bartlett Pub, Sudbury, Massachusetts.
- Hedrick, P.W. (2001). Conservation genetics: where are we now? *Trends in Ecology and Evolution*, 16(11): 629-636.
- Hellberg, M.E., Burton, R.S., Neigel, J.E., y Palumbi, S. R. (2002). Genetic assessment of connectivity among marine populations. *Bulletin of Marine Science*, 70(1): 273-290.
- Hoegh-Guldberg, O. (2012). The adaptation of coral reefs to climate change: Is the Red Queen being outpaced? *Scientia Marina*, 76(2): 403-408.

- Hoegh-Guldberg, O., Mumby, PJ, Hooten, AJ, Steneck, RS, Greenfield, P., Gomez, E., y Hatziolos, M. (2007). Arrecifes de coral bajo rápido cambio climático y acidificación de los océanos. *Ciencia*, 318 (5857): 1737-1742.
- Jombart, T., Devillard, S., y Balloux, F. (2010). Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. *BMC Genetics*, 11(1): 1-15.
- Jones, G.P., Srinivasan, M., y Almany, G.R. (2007). Population connectivity and conservation of marine biodiversity. *Oceanography*, 20(3): 100-111.
- Jordán-Dahlgren, E. (2002). Gorgonian distribution patterns in coral reef environments of the Gulf of Mexico: evidence of sporadic ecological connectivity? *Coral Reefs*, 21(2): 205-215.
- Jordán-Dahlgren, E.J. (1980). Arrecifes coralinos del Noreste de la Península de Yucatán: Estructura comunitaria, un estimador del desarrollo arrecifal. Tesis Doctorado. Universidad Nacional Autónoma de México, Ciudad de México, México.
- Jordán-Dahlgren, E.J. (1989). Gorgonian community structure and reef zonation patterns on Yucatan coral reefs. *Bulletin of Marine science*, 45(3): 678-696.
- Jordán-Dahlgren, E. (1979). Estructura y composición de arrecifes coralinos en la región noreste de la Península de Yucatán, México. *Anales del Instituto de Ciencias del Mar y Limnología, UNAM*, 6: 87-96.
- Langmead, B., y Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2. *Nature Methods*, *9*(4): 357-359.
- Librado, P. and Rozas, J. (2009). DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. *Bioinformatics*, 25: 1451-1452.
- Luikart, G., England, P.R., Tallmon, D., Jordan, S., y Taberlet, P. (2003). The power and promise of population genomics: from genotyping to genome typing. *Nature Reviews Genetics*, 4(12): 981-994. https://doi.org/10.1038/nrg1226.
- López De Heredia Larrea, U. (2016). Las técnicas de secuenciación masiva en el estudio de la diversidad biológica. *Munibe Ciencias Naturales*, 64: 7-31.
- Martínez-Castillo, V., Reyes-Bonilla, H., y Rocha-Olivares, A. (2018). High genetic diversity and limited genetic connectivity in 2 populations of an endemic and endangered coral species: Porites sverdrupi. *Ciencias Marinas*, 44(1): 49-58.
- Martínez, J. P. M. (2020). Estructura genómica poblacional del camarón azul (litopenaeus stylirostris) en la costa noroeste de México. *Tesis de Maestría*. Centro de Investigaciones Biológicas del Noroeste, La Paz, Baja California Sur, México.
- Meda, B.C.G., González, G.M. Z., Cruz, J.M.V., y Rodríguez, B.A. Á. (2011). Secuenciación del ADN y microarreglos. En: *Biología molecular, fundamentos y aplicaciones en las ciencias de la salud*. Mc GRAW Hill Education, Ciudad de México, México, pp. 160-169.
- Micael, J., Rodrigues, P., Costa, A. C., y Alves, M. J. (2014). Phylogeography and genetic diversity of Ophidiaster ophidianus (Echinodermata: Asteroidea) evidence for a recent range expansion in the Azores. *Journal of the Marine Biological Association of the United Kindom*, 94(7): 1475.
- Moberg, F., y Folke, C. (1999). Ecological goods and services of coral reef ecosystems. *Ecological Economics*, 29(2): 215-233.
- Navarro Espinoza, E. (2015). Prevalencia de enfermedades de Acropora palmata en el Parque Nacional Arrecifes de Puerto Morelos y su relación con las fuentes de aporte de nutrientes y el

desarrollo costero. Tesis de Licenciatura. Universidad Nacional Autónoma de México, UNAM, México.

- Oleksiak, M.F., y Rajora, O.P. (2020). Marine population genomics: challenges and opportunities. En: *Population genomics: Marine organisms*. National Science Foundation, Virginia, EUA, pp. 3-35.
- Otwoma, L.M., y Kochzius, M. (2016). Genetic population structure of the coral reef sea star *Linckia laevigata* in the Western Indian Ocean and Indo-West Pacific. *PLOS ONE*, 11(10): e0165552.
- Pareja-Ortega, S., y Young, L.Q. (2016). Evaluation of gametogenesis and fecundity of escleractinian corals: *Orbicella annularis, Pseudodiploria strigosa* and *Siderastrea siderea*, at Isla Fuerte (Bolívar), Colombia. *Actualidades Biológicas*, *38*(104): 5-13.
- Paris, J. R., Stevens, J. R., y Catchen, J. M. (2017). Lost in parameter space: a road map for stacks. *Methods in Ecology and Evolution*, 8(10): 1360-1373. <u>https://doi.org/10.1111/2041-210X.12775</u>.
- Pérez-Cervantes, E., Navarro-Espinoza, E., Estrada-saldívar, N.A., Espinosa-Andrade, N., Melo-Merino, S.M., Rivas-Soto, M., y Álvarez-Filip, L. (2017). Estado de conservación de los arrecifes de coral de la Península de Yucatán. *GreenPeace*, 24.
- Peterson, B.K., Weber, J.N., Kay, E.H., Fisher, H.S., y Hoekstra, H.E. (2012). Double digest radseq: An inexpensive method for de novo SNP discovery and genotyping in model and non-model species. *PLOS ONE*, (5): e37135.
- Piñero, D., et al. (2008). La variabilidad genética de las especies: aspectos conceptuales y sus aplicaciones y perspectivas en México. En: *Capital natural de México, Conocimiento actual de la biodiversidad*. CONABIO, Ciudad de México, México, pp. 415-435.
- Piñero, D., et al. (2008). La diversidad genética como instrumento para la conservación y el aprovechamiento de la biodiversidad: estudios en especies mexicanas. En: *Capital natural de México, Conocimiento actual de la biodiversidad.* CONABIO, Ciudad de México, México, pp. 437-494.
- Planter, E. A. (2007). Flujo génico: métodos para estimarlo y marcadores moleculares. En: *Ecología Molecular*. SEMARNAT-INE-UNAM-CONABIO, Ciudad de México, México. pp. 49-61.
- Precht, W.F., Gintert, B.E., Robbart, M.L., Fura, R., y Van Woesik, R. (2016). Unprecedented disease-related coral mortality in Southeastern Florida. *Scientific reports*, 6 (1): 1-11.
- Pritchard, J. K., M. Stephens, P. Donnelly. (2000). Inference of population structure using multilocus genotype data. *Genetics*, 155(2):945-959.
- Quintero Grijalva, A. (2017). Conectividad de poblaciones del coral cuerno de alce, *Acropora palmata* (Lamarck, 1816), en el Golfo de México y Mar Caribe. *Tesis de Licenciatura*. Universidad Autónoma de Baja California, Ensenada, Baja California, México.
- Ramírez-Bello, J., Vargas-Alarcón, G., Tovilla-Zárate, C., y Fragoso, J. M. (2013). Polimorfismos de un solo nucleótido (SNP): implicaciones funcionales de los SNP reguladores (rSNP) y de los SNP-ARN estructurales (srSNP) en enfermedades complejas. *Gaceta Médica de México*, 149(2): 220-228.
- Reyes-Bonilla, H., del Castillo Cárdena, P. Á., Calderón-Aguilera, L. E., Erosa-Ricárdez, C. E., Melo,
 F. F. R., Frausto, T. C., y Ramírez, D. P. (2014). Servicios Ambientales de Arrecifes Coralinos: El
 Caso del Parque Nacional Cabo Pulmo, BCS. En: *Desarrollo Regional en Baja California Sur:*

Una Perspectiva de los Servicios Ecosistémicos. Instituto Nacional de Ecología y Universidad Autónoma de Baja California Sur. La Paz, México. pp. 49-77.

- Rippe J.P., Dixon G., Fuller Z.L., Liao y, Matz M. (2021). Environmental specialization and cryptic genetic divergence in two massive coral species from the Florida Keys Reef Tract. *Molecular Ecology*, *30*(14): 3468-3484. <u>https://doi.org/10.1111/mec.15931.</u>
- Rippe, J. P., Matz, M. V., Green, E. A., Medina, M., Khawaja, N. Z., Pongwarin, T., y Davies, S. W. (2017). Population structure and connectivity of the mountainous star coral, Orbicella faveolata, throughout the wider Caribbean region. *Ecology and Evolution*, 7(22): 9234-9246.
- Ritson-Williams, R., Paul, V. J., Arnold, S. N., y Steneck, R. S. (2010). Larval settlement preferences and post-settlement survival of the threatened Caribbean corals Acropora palmata and A. cervicornis. *Coral Reefs*, *29*: 71-81.
- Rochette N.C., Rivera-Colón A.G., Catchen J.M. (2019). Stacks 2: Analytical methods for pairedend sequencing improve RADseq-based population genomics. *Molecular Ecology*, 28: 4737– 4754. <u>https://doi.org/10.1111/mec.15253.</u>
- Salazar-Vallejo S.I., Zurita J.C., González N.E., Pérez-Castillo F. y Gamboa H.C. (1993). Áreas costeras protegidas de Quintana Roo. En: *Biodiversidad Marina y Costera de México*. CONABIO y CIQRO, México, pp. 687-708.
- Sale, P. F., Van Lavieren, H., Ablan Lagman, M.C., Atema, J., Butler, M., Fauvelot, C., y Stewart, H. L. (2010). Conservando la conectividad de los arrecifes: guía para los administradores de las áreas marinas protegidas. Grupo de Trabajo de Conectividad, Programa de Investigación Dirigido a los Arrecifes de Coral ya la Creación de Capacidades para la Gestión, UNU-INWEH. Disponible en: <u>https://docplayer.es/7402898-Conservando-la-conectividad-de-los-arrecifes-guia-para-los-administradores-de-las-areas-marinas-protegidas.html</u> [consulta 8 de septiembre 2023].
- Schwartz, S.A., Budd, A.F., y Carlon, D.B. (2012). Molecules and fossils reveal punctuated diversification in Caribbean "faviid" corals. *BMC Evolutionary Biology*, *12*(1):1-10.
- Shearer, T.L., Van Oppen, M. J. H., Romano, S.L., y Wörheide, G. (2002). Slow mitochondrial DNA sequence evolution in the Anthozoa (Cnidaria). *Molecular Ecology*, *11*(12): 2475-2487.
- Severance, E.G., Szmant, A.M., y Karl, S.A. (2004). Single-copy gene markers isolated from the Caribbean coral, Montastraea annularis. *Molecular Ecology Notes*, 4(2): 167-169.
- Sotelo, N. C. S. (2007). Estructura y flujo genético de *Pavona gigantea* (Anthozoa: Scleractinia) en las costas del Pacífico mexicano. *Tesis de Maestría*. Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, México.
- Sturm, A. B., Eckert, R. J., Carreiro, A. M., y Voss, J. D. (2022). Population genetic structure of the broadcast spawning coral, Montastraea cavernosa, demonstrates refugia potential of upper mesophotic populations in the Florida Keys. *Coral Reefs*, *41*(3): 587-598.
- Thome, P. E., Rivera-Ortega, J., Rodríguez-Villalobos, J. C., Cerqueda-García, D., Guzmán-Urieta, E. O., García-Maldonado, J. Q., y Jordán-Dahlgren, E. (2021). Local dynamics of a white syndrome outbreak and changes in the microbial community associated with colonies of the scleractinian brain coral *Pseudodiploria strigosa*. *PeerJ*, 9: e10695.
- Vollmer, A. A., Tringali, M. D., y Allen, M. S. (2022). Development and characterization of 148 SNP markers in the caribbean symmetrical brain coral *Pseudodiploria strigosa*. *Conservation Genetics Resources*, *14*(4): 381-386.

Weil, E., & Vargas, W. L. (2010). Comparative aspects of sexual reproduction in the Caribbean coral genus Diploria (Scleractinia: Faviidae). *Marine Biology*, 157(2): 413-426.

11. ANEXOS

ANEXO A. Geles y cuantificaciones de extracción de DNA

Extracción de DNA de diferentes especies de Coral. Las marcas en rosa representan los fragmentos de DNA de *Pseudodiploria strigosa* y los otros ID. Representan corales de otras especies.

Geles de extracción de Pseudodiploria strigosa (marcados en color rosa)

De las cuantificaciones en QIUBIT se obtuvieron valores desde 4.2 hasta 68.5 ng/ μ , mientras que se obtuvieron valores de hasta en Nanodrop.

Comparación de la cantidad de DNA obtenida por espectrofotometría (Nanodrop, derecha) y Flurometría (QIUBIT, izquierda).

ANEXO B. Geles de librerías (Verificación de ligación, PCR 1)

Las librerías genómicas en las que se utilzaron 48 bardcodes y 3 index diferentes para los 3 pools resultantes, de los cuales se obtuvieron 2.12 ng/ π l en la librería final para secuenciar por medio de llumina.

Gel de verificación de ligación (pool 1).

Gel de verificación de ligación (pool 2).

Gel de verificación de ligación (pool 3).

ANEXO C. Cuantificaciones finales de librería.

Anexo A. Cuantificación QUIBIT PCR 1, Pool 1.

Anexo B. Cuantificación QUIBIT PCR 1, Pool 2.

Anexo C. Cuantificación QUIBIT PCR 1, Pool 3.

Valor final de los pools						
Pool 1 8.45						
Pool 2	1.88					
Pool 3	0.733					
Pool 4 ¹	1.62					

Anexo D. Cuantificaciones en QIUBIT de Pools finales.

¹El pool 4 no corresponde a *Pseudodiploria strigosa,* pero se envió en la librería y fue el valor que se tomó como el más bajo para llevar a equivalencia molecular.

ANEXO D. FASTQC

Calidad de la secuencia por base, Pool 1.

Calidad de la secuencia por base, Pool 2.

Calidad de la secuencia por base, Pool 3.

ANEXO E. Iteraciones del parámetro M.

M2									
	Muestras por locus	Pi	Todos	Variantes	Polimórficos	Alelos privados			
OJ	1.0826	0.14754	2225007	14602	2356	1295			
JA	1.0951	0.044854	554670	4848	256	326			
BO	1.4081	0.28889	11876308	40073	14195	4715			
MN	1.0422	0.11497	165665	735	87	85			
TA	2.4448	0.29543	13396088	46056	24243	11764			
SK	1.1088	0.25371	20781003	78110	21172	13679			
CU	1.0359	0.3552	30461815	66662	4095	14738			

Resultados de la iteración del parámetro M con valor de 2.

Resultados de la iteración del parámetro M con valor de 3.

M3								
	Muestras por locus	Pi	Todos	Variantes	Polimorficos	Alelos privados		
OJ	1.0749	0.15268	2171994	16791	2764	1626		
JA	1.0934	0.050504	545841	5565	328	427		
BO	1.3918	0.29451	11372871	45333	16277	5206		
MN	1.0324	0.12743	162004	926	120	93		
TA	2.4139	0.3023	13027196	53565	28570	13460		
SK	1.1069	0.27479	19821435	87374	25495	16099		
CU	1.0328	0.35862	29166407	75631	27539	15528		

Resultados de la iteración del parámetro M con valor de 4.

M4									
	Muestras por locus	Pi	Todos	Variantes	Polimorficos	Alelos privados			
OJ	1.0726	0.1518	2132136	18263	2976	1778			
JA	1.0906	0.052129	543195	6226	384	479			
BO	1.3862	0.29795	11016689	49027	17786	5670			
MN	1.0293	0.12988	158773	1024	135	95			
TA	2.3891	0.30982	12789669	59070	31996	14827			
SK	1.1068	0.28702	19179067	94212	28692	18116			
CU	1.0311	0.3653	28223398	82608	30623	16096			

ANEXO F. Geles de Agarosa, amplificación de las regiones del gen MaSC1 y Pax-C.

Geles de Agarosa revelados enfoto documentador. Gen: MaSC1.

Geles de Agarosa revelados enfoto documentador. Gen: MSC1.
ANEXO G. Cuantificación de ADN.

Muestras de *Pseudodiploria strigosa*, valores QIUBIT y cálculos para la preparación de las librerías genómicas.

Diluciones de trabajo (10 ng/µl) en 50 µl							
ID 1							
Muestra	Concentración (ng/µl)	ADN stock µl	Buffer AE µl				
Col 66	12.8	39.1	10.9				
Col 68	20.7	24.2	25.8				
*Col 70	10.7	46.7	3.3				
*Col 120	4.7	106.6	-56.6				
Col 121	31.3	39.9	10.1				
*Col 122	5.8	86.2	-36.2				
*Col 123	28	17.9	32.1				
Col 126	42.2	11.8	38.2				
Col 130	12.1	41.3	8.7				
*Col 131	42.9	11.7	38.3				
Col 132	23.2	21.6	28.4				
Col 133	28.4	17.6	32.4				
*Col 136	21.8	22.9	27.1				
Col 137	19.4	25.8	24.2				
Col 138	9.9	50.4	-0.4				
Col 321	28.5	17.5	32.5				
Col 322	25.7	19.5	30.5				
*Col 323	14.9	33.6	16.4				
Col 324	21.3	23.5	26.5				
Col 325	15.5	32.3	17.7				
Col 326	54	9.3	40.7				
*Col 327	17.5	28.6	21.4				
Col 331	35.7	14	36				
Col 332	10	50	0				
Col 333	11.3	44.2	5.8				
Col 334	5.55	90.1	-40.1				
Col 335	18.8	26.6	23.4				
Col 336	14.6	34.2	15.8				
Col 337	12.5	40	10				
Col 338	23.6	21.2	28.8				
*Col 339	11.1	45	5				
Col 340	52	9.6	40.4				
Col 341	20.5	24.4	25.6				

Col 342	13.1	38.2	11.8
Col 347	7.84	63.8	-13.8
Col 348	9.43	53	-3
Col 400	41.1	12.2	37.8
Col 419	10.6	47.2	2.8
Col 435	17	29.4	20.6
Col 447	21.3	23.5	26.5
PCF 301	10.2	49	1
PCF 302	7.07	70.7	-20.7
PCF 304	12.3	40.7	9.3
*PCF 305	4.2	119.3	-69.3
PCF 306	10.2	49	1
PCF 307	9.8	51.1	-1.1
PCF 308	13.1	38.2	11.8
PCF 309	21.7	23	27
PCF 310	12	41.7	8.3
PCF 311	13.2	37.9	12.1
PCF 312	67	7.5	42.5
PCF 313	12.5	40	10
PCF 314	15.9	31.4	18.6
PCF 322	28.5	17.5	32.5
PCF 323	8.66	57.7	-7.7
PCF 324	11.1	45	5
PCF 325	15.7	31.8	18.2
PCF 326	40.2	12.4	37.6
PCF 327	38.1	13.1	36.9
PCF 328	36.2	13.8	36.2
*PCF 329	15.5	32.3	17.7
PCF 330	44	11.4	38.6
PCF 331	40.5	12.3	37.7
PCF 332	18.9	26.5	23.5
PCF 333	16.8	29.8	20.2
PCF 334	8.04	62.2	-12.2
PCF 335	37.7	13.3	36.7
PCF 336	27.2	18.4	31.6
PCF 337	33.3	15	35
PCF 338	36.3	13.8	36.2
PCF 339	27.1	18.5	31.5
PCF 353	9	55.7	-5.7

PCF 362	6.7	74.4	-24.4
PCF 408	8.6	58.3	-8.3
PCF 409	6.1	82.1	-32.1
PCF 412	13.6	36.8	13.2
PCF 413	20.4	24.5	25.5
PCF 414	33.4	15	35
PCF 415	23.8	21	29
PCF 416	16.2	30.9	19.1
PCF 421	12.5	40	10
PCF 423	26.4	18.9	31.1
PCF 440	52	9.6	40.4
PCF 462	7.2	69.4	-19.4
PCF 519	10.7	46.7	3.3
PCF 522	13	38.5	11.5
PCF 542	30.8	16.2	33.8
PCF 543	22.3	22.4	27.6
PCF 544	7.97	62.7	-12.7
PCF 548	15.1	33.1	16.9
PCF 549	17.6	28.4	21.6
PCF 551	14.3	35	15
PCF 552	23.1	21.6	28.4
PCF 553	11.5	43.5	6.5
PCF 557	23.5	21.3	28.7
PCF 558	6.2	81.2	-31.2
PCF 559	5.9	84.3	-34.3
PCF 560	64	7.8	42.2
PCF 561	16.2	30.9	19.1
PCF 562	7.9	63.3	-13.3
PCF 563	12.8	39.1	10.9
PCF 576	31.5	15.9	34.1
PCF 604	30.3	16.5	33.5
PCF 665	11.1	45	5
PCF 667	16.8	29.8	20.2
PCF 668	19.3	25.9	24.1
PCF 669	20.9	23.9	26.1
PCF 673	40.9	12.2	37.8
PCF 677	40.1	12.5	37.5
PCF 687	42.5	11.8	38.2
PCF 704	22.9	21.8	28.2

PCF 705	21.8	22.9	27.1
PCF 706	25.1	19.9	30.1
PCF 707	11.5	43.5	6.5
PCF 708	5.8	86.8	-36.8
PCF 709	18.6	26.9	23.1
PCF 710	35.2	14.2	35.8
PCF 711	27.4	18.2	31.8
PCF 712	19.1	26.2	23.8
PCF 713	23.5	21.3	28.7
PCF 714	11.3	44.2	5.8
PCF 715	12.6	39.7	10.3
PCF 716	33.9	14.7	35.3
PCF 717	28	17.9	32.1
PCF 718	11.3	44.2	5.8
PCF 719	12.6	39.7	10.3
PCF 720	19.1	26.2	23.8
PCF 721	14.4	34.7	15.3
PCF 722	4.9	103.1	-53.1
PCF 723	11.2	44.6	5.4
PCF 724	4.8	104	-54
PCF 725	68.5	7.3	42.7
PCF 726	6.2	80.1	-30.1
PCF 727	7.7	64.9	-14.9
PCF 728	28.7	17.4	32.6
PCF 729	5.4	92.1	-42.1
PCF 730	22.9	21.8	28.2
PCF 731	7.2	69.3	-19.3
PCF 732	4.7	107.3	-57.3
PCF 733	43.4	11.5	38.5
PCF 753	11.5	43.5	6.5
PCF 754	6.3	79.9	-29.9
PCF 755	7.2	69.2	-19.2
PCF 756	14.4	34.7	15.3
PCF 757	20.9	23.9	26.1
PCF 758	30.1	16.6	33.4
PCF 759	55	9.1	40.9

¹ Se marcaron (*) aquellos ID que fueron eliminados ya que no pasaron los filtros de selección para tener el mínimo de 100 ng totales o no se observaba un ADN integro en geles.

ANEXO H. Cuantificación de lecturas.

ID				
individuo	Total de lecturas	Lecturas retenidas	Rem 1	Rem 2
P724	2926	678	35	387
P324	3444	1015	54	611
P667	5500	1739	70	1059
C337	11840	1994	158	836
C336	6068	2078	200	958
C331	7400	3203	225	1186
P669	5538	3281	254	497
C66.1	9508	3755	257	934
P711	8092	3866	288	514
P729	9946	4579	343	804
C130.1	8356	4581	317	808
P413	11010	4923	349	2038
P687	8846	4989	387	544
P715	9478	5035	400	885
P325	8618	5088	392	538
P708	10816	5188	323	1381
P712	10838	5339	385	980
P323	9358	5441	374	797
C130	10646	5508	476	496
C447	9514	5782	420	600
C326	10018	5955	557	712
P716	10528	6166	463	1127
P519	13596	6396	302	3194
P704	11342	6420	491	973
P726	13616	6603	384	2163
P723	12742	6695	541	1146
C332	13078	6774	499	1967
C66	16446	7175	460	2263
P310	15538	8036	733	1567
P707	17008	8227	420	2661
P543	18026	8461	756	1317
C347	18000	8573	790	2289
C335	14914	8878	805	927
C132	16056	10016	1112	1072
P725	21362	11470	1103	2745

Número de lecturas por individuo (process radtags).

P542	19610	12614	1526	1080
P559	41110	13477	182	12135
C333	25280	13895	1902	1487
C348	25880	14571	1465	2020
P322	26276	14738	1446	2576
P544	40624	17419	1530	6653
C138.1	58860	17788	235	16067
P728	66752	18057	499	14586
P665	55718	18254	403	15871
C68	72372	21563	783	17206
P306	67024	21652	151	20253
P755	75550	21746	1492	15110
P362	81974	21910	160	20268
P563	57934	22477	595	16984
P551	83356	23406	454	19790
P326	63576	23925	1534	13525
P561	78020	23944	285	21785
P753	79652	26585	190	25213
P576	76956	26918	10684	2908
P719	76732	27719	429	24402
P722	82268	27932	430	24988
P522	88828	28427	3165	19360
P311	73856	28834	1808	16832
P718	96492	29926	423	26319
P70	94940	31087	315	28356
P604	90702	32018	525	26765
P713	100884	32485	437	30002
P553	94828	32759	81	31842
P334	100580	33409	2013	24186
C419	106440	35168	470	31906
P709	103500	39815	474	35281
P338	98822	40748	2133	21911
C137	129168	40818	835	35173
P313	132052	42762	1115	38927
P308	135960	43083	489	38914
P721	117240	43746	2167	28641
P408	115290	44385	1340	32825
P335	127198	47798	2045	35223
P727	170138	48215	5187	12488
C338	125218	49655	1075	37656
P560	135570	50075	449	45890

P552	109390	52573	4764	18797
C334	159042	52641	413	50174
P302	129064	52812	1334	39634
P717	142900	52967	2252	43195
P314	143718	53776	408	51690
P714	181362	53875	3005	43652
C132.1	171264	55050	28545	4157
C435	155028	55380	808	49640
P332	161452	56200	3412	42436
C342	150230	56606	819	49345
P414	145150	57958	873	49203
P412	180096	64651	1997	55782
P421	169254	65599	975	56132
C341	155096	67219	2715	42218
P336	319262	67706	9378	32792
P756	179680	69492	1091	57437
P312	145936	72657	2812	34735
P301	211774	73755	488	68451
P732	201154	78279	849	68848
C322	206952	79297	837	71066
P723.1	221180	80162	33513	8759
P562	212036	81802	6248	47990
P731	209212	82284	1218	69500
P339	189624	92904	4002	44670
P758	232154	96334	646	89698
P705	255844	99182	900	90334
P440	199706	100001	4970	46863
P557	365728	100339	12151	62650
P304	304678	116150	761	107891
P730	262022	121861	3669	72318
P409	310236	128050	2741	101091
P733	300424	130154	6959	54887
P416	346750	137776	1987	119071
C121	362238	138160	1519	126515
C133.1	330892	143802	3405	106027
P415	290234	162605	9561	49616
C325	463640	169852	2787	153099
C138	478360	179822	1315	167257
P353	655798	204915	66933	61306
C321	327770	207490	16199	43291
P462	878906	214193	40811	107200

P668	355696	217498	34924	17154
C400	590952	222313	1211	216676
P754	703506	248152	69005	57869
P757	676704	276126	12926	185536
C324	560382	305255	17637	111244
P558	723342	305584	850	297662
P710	563062	317168	19186	109806
C133	817888	317916	1819	300861
P333	816258	322190	1774	303562
C340	661406	389022	18468	139078
P307.1	1550258	495251	186705	113808
P327	1102870	529989	41614	211495
P706	869442	567713	38289	132850
P307	1855122	593188	210637	159333
P309	1481404	604950	2947	569131
P328	2029534	1172911	64937	364746
P331	2164682	1208612	60434	513854
P337	2552298	1278469	50533	708234
P759	3846088	1686921	46031	1248064
P677	3914682	2943856	216934	332922
P548	7502358	4082566	186034	1987184
P330	8820620	5525315	394762	1057633
P549	52010534	42171811	3376552	2324623
P673	105635644	60404038	2873910	26205206
P423	81847350	64632226	5063748	4897488

Filtrado de las lecturas separando simbionte y hospedero.

ID	Lecturas utilizadas	Lecturas mapeadas con simbionte de P.S	Lecturas no mapeadas con el simbionte de P.S	Lecturas compartidas simbiontes y hospedero	Lecturas únicas del simbionte de P.S	Lecturas de otros simbiontes	Lecturas únicas del Hospedero
P724	128	0	128	0	0	97	31
P324	175	1	174	1	0	126	48
P667	305	1	304	0	1	233	71
C337	500	19	481	0	19	275	206
C336	460	5	455	5	0	325	130
C331	896	10	886	7	3	565	321
P669	1265	5	1260	5	0	1191	69
C66.1	1282	34	1248	23	11	1184	64
P711	1532	10	1522	10	0	1453	69
P729	1716	27	1689	20	7	1634	55
C130.1	1728	33	1695	32	1	1621	74
P413	1268	32	1236	7	25	785	451
P687	2029	28	2001	7	21	1919	82
P715	1875	18	1857	13	5	1789	68
P325	2079	39	2040	17	22	1984	56
P708	1742	23	1719	12	11	1685	34
P712	1987	41	1946	32	9	1813	133
P323	2135	81	2054	71	10	1982	72
C130	2268	32	2236	27	5	2145	91
C447	2381	13	2368	12	1	2264	104
C326	2343	32	2311	26	6	2113	198
P716	2288	35	2253	31	4	2171	82
P519	1450	44	1406	26	18	1361	45
P704	2478	33	2445	32	1	2373	72
P726	2028	24	2004	19	5	1834	170
P723	2504	60	2444	24	36	1936	508
C332	2154	41	2113	28	13	1663	450
C66	2226	24	2202	23	1	2145	57
P310	2868	32	2836	11	21	2345	491
P707	2573	36	2537	31	5	2343	194
P543	3194	98	3096	76	22	2118	978
C347	2747	38	2709	20	18	2177	532
C335	3573	35	3538	31	4	3127	411
C132	3916	79	3837	22	57	2551	1287

P725	3811	76	3735	42	34	2632	1103
P542	5004	68	4936	32	36	3341	1595
P559	580	14	566	4	10	429	137
C333	5253	77	5176	34	43	3520	1656
C348	5543	155	5388	50	105	3136	2252
P322	5358	112	5246	95	17	2979	2267
P544	4618	211	4407	28	183	3221	1186
C138.1	743	20	723	3	17	570	153
P728	1486	48	1438	19	29	1013	425
P665	990	23	967	12	11	683	284
C68	1787	46	1741	11	35	937	804
P306	624	5	619	4	1	348	271
P755	2572	16	2556	6	10	2191	365
P362	741	24	717	7	17	615	102
P563	2449	68	2381	8	60	1655	726
P551	1581	15	1566	14	1	1375	191
P326	4433	300	4133	42	258	2495	1638
P561	937	51	886	9	42	744	142
P753	591	25	566	10	15	314	252
P576	663	213	6450	123	90	3647	2803
P719	1444	41	1403	11	30	1007	396
P722	1257	55	1202	12	43	948	254
P522	2951	42	2909	21	21	2091	818
P311	5097	115	4982	41	74	2630	2352
P718	1592	34	1558	7	27	1059	499
P70	1208	31	1177	6	25	938	239
P604	2364	38	2326	23	15	1851	475
P713	1023	49	974	15	34	729	245
P553	418	11	407	1	10	268	139
P334	3605	114	3491	24	90	1968	1523
C419	1396	49	1347	2	47	1061	286
P709	2030	73	1957	22	51	1321	636
P338	8352	177	8175	51	126	4798	3377
C137	2405	35	2370	13	22	1919	451
P313	1360	28	1332	11	17	962	370
P308	1840	23	1817	10	13	1430	387
P721	6469	386	6083	16	370	4315	1768
P408	5110	193	4917	64	129	4006	911
P335	5265	108	5157	22	86	2867	2290
P727	15270	226	15044	165	61	7076	7968
C338	5462	175	5287	68	107	3121	2166

P560	1868	71	1797	45	26	1056	741
P552	14506	486	14020	386	100	5185	8835
C334	1027	52	975	2	50	737	238
P302	5922	154	5768	38	116	3841	1927
P717	3760	69	3691	29	40	2122	1569
P314	839	3	836	1	2	406	430
P714	3609	198	3411	25	173	2277	1134
C132.1	11174	246	10928	19	227	7368	3560
C435	2466	63	2403	29	34	1793	610
P332	5176	126	5050	32	94	3290	1760
C342	3221	83	3138	31	52	1677	1461
P414	3941	80	3861	27	53	2400	1461
P412	3436	81	3355	29	52	1779	1576
P421	4246	124	4122	95	29	2269	1853
C341	11143	327	10816	31	296	7326	3490
P336	12768	178	12590	95	83	6024	6566
P756	5482	100	5382	38	62	3817	1565
P312	17555	411	17144	135	276	10495	6649
P301	2408	36	2372	13	23	1784	588
P732	4291	56	4235	18	38	1887	2348
C322	3697	41	3656	27	14	2574	1082
P723.1	18945	485	18460	70	415	10758	7702
P562	13782	336	13446	39	297	8787	4659
P731	5783	163	5620	72	91	4313	1307
P339	22116	303	21813	93	210	12749	9064
P758	2995	113	2882	11	102	1843	1039
P705	3974	128	3846	11	117	2929	917
P440	24084	1403	22681	75	1328	13675	9006
P557	12769	408	12361	234	174	7165	5196
P304	3749	99	3650	33	66	2779	871
P730	22937	320	22617	104	216	13789	8828
P409	12109	331	11778	62	269	6492	5286
P733	34154	580	33574	144	436	18907	14667
P416	8359	134	8225	20	114	5744	2481
C121	5063	57	5006	36	21	2989	2017
C133.1	17185	186	16999	110	76	6926	10073
P415	51714	1277	50437	291	986	28239	22198
C325	6983	505	6478	33	472	3952	2526
C138	5625	434	5191	32	402	3245	1946
P353	38338	943	37395	471	472	16391	21004
C321	74000	799	73201	250	549	41821	31380

P462	33091	990	32101	389	601	27063	5038
P668	82710	827	81883	537	290	30229	51654
C400	2213	81	2132	11	70	1293	839
P754	60639	657	59982	404	253	23063	36919
P757	38832	1941	36891	368	1573	22965	13926
C324	88187	1201	86986	716	485	46549	40437
P558	3536	41	3495	15	26	2193	1302
P710	94088	2360	91728	236	2124	62273	29455
C133	7618	120	7498	33	87	4947	2551
P333	8427	133	8294	37	96	5169	3125
C340	115738	1416	114322	737	679	60876	53466
P307.1	97369	1894	95475	170	1724	66169	29306
P327	138440	3236	135204	917	2319	86156	49048
P706	198287	10767	187520	775	9992	105004	82516
P307	111609	2227	109382	232	1995	75457	33925
P309	16436	1652	14784	113	1539	9100	5684
P328	371614	6401	365213	1816	4585	207590	157623
P331	317162	5690	311472	1255	4435	167382	144090
P337	259851	4799	255052	913	3886	139075	115977
P759	196413	3506	192907	951	2555	109337	83570
P677	1197000	20766	1176234	2914	17852	630713	545521
P548	954674	64260	890414	5978	58282	499262	391152
P330	2036460	22587	2013873	8729	13858	1081028	932845
P549	18235318	520939	17714379	251296	269643	6494462	11219917
P673	15662461	480472	5181989	202594	277878	12783599	2398390
P423	27335495	287938	27047557	183068	104870	9647258	17400299