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ABSTRACT
Two experimental feeding trials were conducted during four weeks to evaluate the
use of Ulva lactuca in shrimp culture: (1) for wastewater bioremediation, and (2)
using different inclusion levels of U. lactuca meal in shrimp feed. In feeding trial 1,
shrimp reared under seaweed U. lactuca water exchange in a re-circulation system
(SWE) resulted in similar growth and feed utilization as shrimp reared with clean water
exchange (CWE). Shrimp under nowater exchange (NWE) resulted in significant lower
growth and higher feed conversion rate (FCR) compared to the other treatments (p<

0.05).Nitrogen compounds andphosphate inwater fromSWEandCWE treatments did
not present significant differences during the experimental trial (p> 0.05). In feeding
trial 2, U. lactuca biomass produced by wastewater bioremediation in SWE treatment
were dried and ground to formulate diets containing 0, 1, 2, and 3% U. lactuca meal
(0UL, 1UL, 2UL, and 3UL). Shrimp fed the 3 UL diet resulted in a significant (p< 0.05)
improvement of growth and FCR, and enhanced whole shrimp lipid and carotenoid
content by 30 and 60%, respectively, compared to control diet. Seaweed U. lactuca is
suggested as a desirable species for wastewater bioremediation in integrated aquaculture
systems, and its meal as a good feed additive for farmed shrimp.

Subjects Aquaculture, Fisheries and Fish Science, Environmental Contamination and
Remediation
Keywords Feed additive, Seaweed, Shrimp, Water quality

INTRODUCTION
In the last decades, aquaculture has been one of the fastest growing industries of food
production. By 2015, farmed shrimp represented an estimate global production of 4.8
million metric tons, with a value of US$24.96 billion (FAO, 2017). Some of the challenges
for this growing activity are the reduction of coastal water pollution impact (Herbeck et al.,
2013) and the search for non-conventional ingredients to produce high quality feeds (Little,
Newton & Beveridge, 2016). In the case of seaweeds produced by aquaculture, it has been
estimated by 2015 a worldwide production of 28.5 million metric tons valued in US$4.46
billion (FAO, 2017). For Ulva lactuca seaweed, research interest has increased due to their
rapid vegetative growth in the presence of high nutrient levels and has been adapted to
culture in tanks (DeBusk, Blakeslee & Ryther, 1986), with various industrial applications
including human and animal nutrition (Ortiz et al., 2006; Yaich et al., 2011).
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The use of seaweeds in integrated multi-trophic aquaculture (IMTA) has been proposed
as an alternative for environmental-sustainable expansion of aquaculture, serving as
primary food source and also for water bioremediation due to their high capability of
removing inorganic nutrients from wastewater (Neori et al., 2004; Neori, 2008; Fleurence
et al., 2012). Benefits of integrated aquaculture of shrimp and green seaweeds has been
documented for Ulva clathrata that showed high efficiency in removing the inorganic
nutrients from water effluents (Copertino, Tormena & Seeliger, 2009), in addition as an
improvement of feed utilization in white shrimp Litopenaeus vannamei (Cruz-Suárez et
al., 2010) and in brown shrimp Farfantepenaeus californiensis (Peña Rodríguez et al., 2016;
Peña Rodríguez et al., 2017). U. lactuca improved water quality when cultured with western
king prawn Penaeus latisulcatus (Van Khoi & Fotedar, 2011) and with L. vannamei (Brito et
al., 2014); Caulerpa sertularioides presence resulted in F. californiensis growth enhancement
(Portillo-Clark et al., 2012).

Seaweeds are an excellent source of protein, carotenoids, minerals, polysaccharides,
and vitamins making their utilization as feed additives attractive (Kumar et al., 2011;
Peña Rodríguez et al., 2011; Syad, Shunmugiah & Kasi, 2013). Some seaweeds have been
suggested as a partial feed substitute (Marinho-Soriano et al., 2007) for shrimp diet, and
considered a good source of protein (Da Silva & Barbosa, 2009), which represents the most
expensive fraction of feed cost. In some cases, shrimp composition is modified when fed
seaweeds, these changes may include lipid content and carotenoids (Cruz-Suárez et al.,
2010; Subhra Bikash, 2015), or total cholesterol (Casas-Valdez et al., 2006). The optimal
level of inclusion of seaweed meal in shrimp feed varies among seaweed species, but, in
most cases, studies have found benefits when included not higher than 5% (Cruz-Suárez et
al., 2009; Rodríguez-González et al., 2014; Cárdenas et al., 2015; Yu et al., 2016; Schleder et
al., 2017).

Despite some studies explore the use seaweeds for water bioremediation, there is no
reports of the use of U. lactuca produced under these conditions as a feed ingredient for
shrimp. The aim of the present work was to evaluate shrimp growth and water quality of an
integrated culture systemwithU. lactuca and, on the other side, the effect ofU. lactucameal
as feed additive at different inclusion levels on shrimp performance, lipid and carotenoid
content.

MATERIALS AND METHODS
Collection and maintenance of seaweed
Seaweed U. lactuca was collected from the La Paz bay in Baja California Sur, Mexico
(Collection permit Conapesca #PRMN/DGOPA-019/2015). The U. lactuca was washed
with sterilized marine water to remove epiphytes, then placed in laboratory conditions, in
5-Lmarine water tanks, at 25 ◦C, with a photoperiod of 12 h:12 h light:dark with fluorescent
light tubes of 75 W, and using Provasoli medium at a constant concentration of 0.5 ppm of
nitrogen in water. The U. lactuca was kept under laboratory conditions during two weeks
prior to the feeding trial.
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Feeding trials
For the first experimental trial, three different treatments during 28 days were evaluated:
clean water exchange (CWE), seaweed U. lactuca water exchange (SWE), and no water
exchange (NWE). The CWE treatment consisted in 50% daily exchange of clean water
using marine water pumped from an open water intake from La Paz bay, filtered up to
1-µmmesh and sterilized by UV light. For the SWE treatment, one tank of 50 L was placed
with 50 g of U. lactuca next to a shrimp tank, making a 50% daily water exchange in a
re-circulation system (using a transitory tank to make the exchange) between shrimp and
U. lactuca tanks, without new clean water input. Each U. lactuca tank was provided with
artificial light (cool-white fluorescent lamps 70 W; Osram) with photoperiod of 12h:12 h
light:dark. The U. lactuca was partially harvested every week to maintain 50 g in each tank.
The harvestedU. lactucawas washed with distilled water, dried in a forced-air oven at 50 ◦C
for 4 h, and stored at 4 ◦C until use for feeding trial 2. In the case of NWE treatment, only
5% of clean water was recovered in each tank per week due to evaporation. All treatments
were evaluated in triplicate, and each replicate consisted of a 50-L fiberglass tank provided
with aeration and temperature control containing 10 L. vannamei shrimp (initial weight
0.30± 0.05 g) obtained from a commercial hatchery (Acuacultura Mahr, S.A. de C.V.) and
previously acclimated to laboratory conditions (28 ◦C and 35h salinity). Shrimp from all
treatments were fed with a control feed of 34% crude protein and 8% lipids (see Table 1,
treatment 0UL), with an initial rate of 10% biomass divided in two rations distributed at
9:00 and 15:00 h. After second day, the feeding rate was ad libitum by adjusting each tank
according to consumed feed. The feed was manufactured in the Aquaculture nutrition
laboratory at CIBNOR. All dry ingredients (≥ 250 µm) were mixed first, then oil-based
ingredients and water were added and mixed again to obtain a homogenous mixture, and
passed through a 2-mm die in a meat grinder. The pellets were dried in a forced-air oven
at 45 ◦C for 12 h, and stored at 4 ◦C until feeding time.

During the experimental period, water temperature, pH and oxygen were monitored
daily with a multiparameter YSI 556 (YSI Incorporated, Yellow Springs, OH, USA).
The total ammonia, nitrites, nitrates, and phosphate were measured every four days
by spectrophotometric methods according to the manufacturer’s specification (LYSA,
Mexico). At the end of the experimental period, shrimp performance was measured in
terms of final weight, weight gain, specific growth rate (SGR), feed conversion ratio (FCR),
feed consumption, and survival.

For the second experiment, a 28 day feeding trial was performed to evaluate the
U. lactucameal produced by water bioremediation. Based on the control diet of experiment
1, three more diets were produced including 1, 2, and 3% levels of the U. lactuca meal
(in substitution of the same proportion of wheat meal) (see Table 1). All experimental
U. lactuca feeds were produced as described previously as in the control feed. Each
treatment was evaluated in triplicate as described in experiment 1, using shrimps with
an initial average weight of 0.59 ± 0.09 g. Feeding strategy was conducted as in the
previous trial. At the end of the experimental period, five complete shrimps and five
shrimps separated in cephalothorax (head) and tail from each treatment were lyophilized
for total lipid and carotenoid analysis. Total lipid content was performed according to
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Table 1 Ingredients, proximate composition, and gross energy of experimental diets andUlva lactuca
meal.

0UL 1UL 2UL 3UL U. lactuca

Ingredients
Fish meala 240 240 240 240
Soybean mealb 230 230 230 230
Wheat mealc 401 391 381 371
Soy lecithind 41 41 41 41
Corn glutene 30 30 30 30
Fish oila 24 24 24 24
Vitamin premixf 18 18 18 18
Greneting 10 10 10 10
Mineral premixh 5 5 5 5
Vitamin Ci 1 1 1 1
Ulva lactucameal 0 10 20 30

Proximate composition
(g 100 g−1 dry matter)
Moisture 8.3± 0.1 8.2± 0.1 8.7± 0.2 8.5± 0.1 8.7± 0.1
Protein 33.9± 0.24 33.9± 0.06 33.7± 0.10 33.5± 0.08 15.5± 0.1
Lipids 7.9± 0.08 7.9± 0.03 7.9± 0.06 7.9± 0.12 0.3± 0.01
Crude Fiber 0.87± 0.01 0.86± 0.06 0.86± 0.03 0.87± 0.06 3.3± 0.1
Ash 6.6± 0.03 6.9± 0.03 7.3± 0.01 7.7± 0.03 36.5± 0.1
NFE 50.6 50.3 50.2 50.0 44.5
Gross energy (MJ kg−1) 18.09± 0.47 17.93± 0.22 17.77± 0.35 17.60± 0.28 9.46± 0.14

Notes.
aProteinas Marinas y Agropecuarias SA de CV, Jalisco, MX.
bPromotora Industrial Acuasistemas SA de CV (PIASA), Baja California Sur, MX.
cMolino San Cristobal, Sonora, MX.
dSuministros AZ, Baja California Sur, MX.
eAgro Insumos Basicos, SA de CV, MX.
fVitamins: Vit. A, (20,000 UI/g) 90 mg/kg; Vit. B1, 9 mg/kg; Vit. B2, 54 mg/kg; Vit. B5, 90 mg/kg; Vit. B6, 18 mg/kg; Vit. B12,
0.04 mg/kg; Vit. K3, 36 mg/kg; Vit. D3, (850,000 UI/g) 144 mg/kg; Vit. H, 1 mg/kg; folic acid, 3.24 mg/kg; Inositol, 90 mg/kg.
Sigma aldrich, Missouri, US.

gKnox, Estado de Mexico, MX.
hMinerals: CoCl2, 20 mg/kg; H2MnO5S, 3.3 g/kg; H14O11SZn, 66 g/kg; CuH10O9S, 1.3 g/kg; FeSO4, 20 g/kg; Na2SeO3, 50
mg/kg; KI, 330 mg/kg. Sigma Aldrich, Missouri, US.
iRovimix Stay C 35%, DSM, Heerlen, NL.
Values of proximate composition are given as mean±SD of triplicate determinations.

Barnes & Blackstock (1973) by using phosphosulphovanillin method and measured by
spectrophotometry (Multiskan spectrum; Thermo Fisher, Vantaa, Finland) at 540 nm.
Total carotenoid content was analyzed according to Palacios et al. (1999), employing
acetone:methanol (2:1) for extraction and measured by spectrophotometry at 495 nm.

Water quality parameters were measured as described previously. Proximate analysis of
all experiment feeds and U. lactuca was conducted according to AOAC (2005) methods,
nitrogen free extract (NFE) was calculated through difference, and gross energy was
measured with an adiabatic calorimeter. Total carotenoids from U. lactuca meal was
analyzed as described for shrimp samples. The proximate composition of experimental
feeds and U. lactuca meal are presented in Table 1.
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Table 2 Growth, feed utilization and survival after 4-week experimental trial with L. vannamei
reared under regular water exchange (CWE), water recirculation withU. lactuca (SWE) and no water
exchange (NWE).

CWE SWE NWE P value

Final weight (g) 2.15± 0.06b 2.08± 0.04b 1.82± 0.05a 0.000
Weight gain (%) 613± 19b 593± 12b 503± 16a 0.000
SGR (% day−1) 7.02± 0.10b 6.91± 0.06b 6.42± 0.10a 0.000
FC (g) 2.20± 0.08 2.11± 0.02 2.14± 0.05 0.214
FCR 1.19± 0.01a 1.18± 0.02a 1.41± 0.06b 0.000
Survival (%) 90± 10 96± 6 83± 6 0.171

Notes.
Values are given as mean±SD of triplicate determinations. Means with different superscripts in same row are significantly dif-
ferent (p< 0.05).
Weight gain (%), (final weight-initial weight)/ initial weight× 100; SGR (% day−1), 100 (ln(average final weight)-ln(average
initial weight))/number of days; FC (g), pelleted feed consumed per shrimp; FCR, pelleted feed consumed (g)/wet weight
gain (g); Survival (%), final number of shrimp/ initial number of shrimp× 100.

Data analysis
Data were analyzed for normality and homoscedasticity through Shapiro–Wilk and
Levene’s test, respectively. Results were reported as means ± standard deviation (SD) and
group means were compared using one-way analysis of variance (ANOVA) followed, if
applicable, of a Tukey’s multiple comparison test (95% confidence). All data were analyzed
with the SPSS Statistics 17.0 software.

RESULTS
At the end of feeding trial 1, shrimp under daily clean water exchange (CWE) and
daily seaweed U. lactuca water exchange (SWE) treatments resulted in significant higher
(p< 0.05) final weight, weight gain, and SGR compared to shrimp with no water exchange
(NWE) (Table 2). Feed consumption was similar among the treatments, nevertheless
FCR observed in NWE treatment was significantly higher than the rest of the treatments
(p< 0.05). Shrimp under NWE treatment showed a lower percentage of survival but not
significantly different compared to the rest of treatments. At the end of the experimental
period, water quality parameters were significantly different among treatments (Fig. 1). The
NWE treatment resulted in significant increment (p< 0.05) of total ammonia nitrogen,
nitrites, nitrates, and phosphate compared to treatments with water exchange, whereas the
pH showed no significant differences among treatments. Removal of inorganic compounds
in U. lactuca treated water was higher than 80% for nitrogenous compounds and 64% for
phosphate compared to the treatment without water exchange. Total harvest of fresh U.
lactuca, under the experimental conditions, was 225± 25 g per tank, with a specific growth
rate of 5.37 ± 0.41 (% day−1). After drying, U. lactuca meal resulted in a 15.5% of crude
protein and 36.5% ash (Table 1), which was used to prepare experimental feeds for feeding
trial 2.

In feeding trial 2, experimental feeds did no show differences in proximal composition
except for ash content in feed containing 3% ofU. lactucameal (3UL), which resulted 1.1%
higher compared to the control feed (0UL) as expected. Total carotenoids in U. lactuca
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Figure 1 Water quality parameters during experiment 1. CWE, 50% daily clean water exchange; SWE,
50% daily exchange with water bioremediation by Ulva lactuca; NWE, no water exchange. (A) Water vari-
ations of total ammonia nitrogen (N-NH3); (B) Water variations of nitrate (NO3); (C) Water variations of
nitrite (NO2); (D) Water variations of phosphate (PO4); (E) Water variations of pH. Values are given as
mean± SD of triplicate determinations, (∗) are significantly different (p< 0.05).

Full-size DOI: 10.7717/peerj.4459/fig-1

meal resulted in 3.5 mg g−1 in dry basis. Results of shrimp performance after evaluation
of experimental feeds with different inclusion levels of U. lactuca meal (Table 3) showed
that shrimp fed diet with 3% U. lactuca meal had a significantly higher growth in terms of
final weight, weight gain, and SGR (p< 0.05) compared to the control diet (0UL) and that
of 1% of U. lactuca (1UL). Shrimp fed 2UL treatment showed no significant differences in
growth parameters compared to the other treatments. In terms of feed utilization, the 3UL
diet induced a significantly lower (p< 0.05) FCR compared to the rest of the treatments.
Shrimp survival was higher than 95% in all treatments. Total lipid content in whole shrimp
(Fig. 2A) was significantly higher in shrimp with 3UL compared to the rest of treatments
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Table 3 Growth performance, feed utilization, and survival after 4-week experimental trial with
L. vannamei juveniles fed diets containing different levels ofU. lactucameal.

0UL 1UL 2UL 3UL P value

Final weight (g) 2.54± 0.08a 2.55± 0.08a 2.58± 0.11a,b 2.78± 0.06b 0.026
Weight gain (%) 330± 13a 332± 13a 337± 19a,b 371± 10b 0.028
SGR (% day−1) 5.21± 0.11a 5.23± 0.11b 5.27± 0.15a,b 5.54± 0.08b 0.030
FC 2.47± 0.06 2.44± 0.04 2.51± 0.06 2.53± 0.03 0.163
FCR 1.27± 0.03b 1.25± 0.05b 1.26± 0.05b 1.15± 0.03a 0.028
Survival (%) 100 96± 6 100 100 0.441

Notes.
Values are given as mean± SD of triplicate determinations. Means with different superscripts in same row are significantly
different (p< 0.05).

(p< 0.05). Additionally, shrimp fed 3UL showed significantly higher concentration of total
carotenoids in the head; in the muscle, 2UL and 3UL yielded significantly higher amounts
of carotenoids than the rest of treatments; and considering the whole shrimp, all U. lactuca
meal diets resulted in significantly higher content of carotenoids compared to the control
diet (Fig. 2B). Lineal regressionmodel showed a correlation between level ofU. lactucameal
inclusion in feed and total carotenoids in whole shrimp (y = 3.605x+17.22, R2

= 0.88)
and head (y = 5.738x+28.518, R2

= 0.788). Water quality parameters during the second
experimental period were very stable among treatments: temperature (28 ± 0.4 ◦C) pH
(8.0 ± 0.1), NH3, NH4+ (<0.5 mg L−1), NO2 (<0.25 mg L−1), and NO3 (<5 mg L−1).

DISCUSSION
According to the water quality parameters during experiment 1, results revealed the
high efficiency of U. lactuca in removing nitrogen compounds and phosphorus from
shrimp’s wastewater (80% and 64%, respectively) under the integrated recirculation
system. These results are consistent with other reports describing the high efficiency
of Ulvales in biofiltering inorganic compounds from aquaculture effluents. Copertino,
Tormena & Seeliger (2009) determined that U. clathrata removes up to 70–82% of the total
ammonia nitrogen (TAN) and 50% of phosphate. In a study of an intensive co-culture
system of U. lactuca and L. vannamei, TAN and phosphate were significantly reduced in
culture water by 25.9% and 24.6%, respectively, compared to a system without U. lactuca
(Brito et al., 2014). The nitrogenous compounds removed by seaweed reflected 15.5%
protein content in meal, which revealed a higher proportion than reports in wild collected
U. lactuca (7.1 to 10.7%) (Wong & Cheung, 2000; Yaich et al., 2011; Tabarsa et al., 2012),
but lower than described for U. lactuca cultured in a controlled system (21.1%) (Ventura
& Castañón, 1998). An integration of a total or partial recirculating system of U. lactuca
and shrimp may decrease the need of out coming water, improving farm biosecurity
and reducing the possibility of disease outbreaks (Muniesa et al., 2015). According to the
present experimental results, U. lactuca meets different criteria suggested by other authors
to select an efficient seaweed biofilter for integrated aquaculture, which includes nutrient
intake from wastewater (Kang, Park & Chung, 2011), seaweed density, and water flow rate
(Al-Hafedh, Alam & Buschmann, 2015).
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Figure 2 Total lipids and total carotenoid in shrimp fed experimental diets containing different inclu-
sion levels ofU. lactucameal. (A) Total lipids and (B) Total carotenoids in shrimp fed experimental diets
containing 0% (0UL), 1% (1UL), 2% (2UL) and 3% (3UL) of U. lactucameal. Values are given as mean±
SD of multiple determinations (n = 5). Different superscripts denotes statistical differences among treat-
ments (p< 0.05).

Full-size DOI: 10.7717/peerj.4459/fig-2

Water bioremediation with U. lactuca (trial 1) did not affect shrimp growth or feed
utilization, as described by Fourooghifard et al. (2017), where the water quality improved
without affecting shrimp growth in a zero water exchange system of integrated culture
of L. vannamei and Gracilaria cortica. No significant growth differences were observed in
L. vannamei cultured in floating cages with red seaweed Kappaphycus alvarezii compared
to shrimp monoculture system (Lombardi et al., 2006). On the other hand, when no water
exchange was performed, shrimp growth and feed utilization was affected possibly by
water quality. It has been described that exposure to high concentrations of ammonia
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in water increases oxygen and energy demand in shrimp (Racotta & Hernández-Herrera,
2000) reflected in lower growth (Chen & Kou, 1992). However, shrimp performance in low
or no water exchange culture systems can also be affected by the shrimp stock densities
(Hopkins et al., 1993), feed composition (Wasielesky et al., 2006), and feeding frequency
(Tacon et al., 2002).

In feeding trial 2, where U. lactuca produced by bioremediation was evaluated as
feed ingredient, shrimp growth was improved when fed 3% U. lactuca meal in feed.
Rodríguez-González et al. (2014) suggest that the limiting inclusion level for U. lactuca
meal in shrimp feed should not exceed 5%, showing that levels of 10 and 15% reduced
significantly shrimp growth compared to a control diet without U. lactuca inclusion.
Serrano Jr, Santizo & Tumbokon (2015) also experimented with 15 and 30% U. lactuca
meal inclusion in P. monodon shrimp, finding no growth improvement at the lower
inclusion level and significant reduction of shrimp growth at the higher inclusion level.
Similar results in fish were observed, poor growth and feed utilization were shown in
African catfish (Abdel-warith, Younis & Al-asgah, 2016) and in Rainbow trout (Yildirim et
al., 2009) when high levels of U. lactuca meal (>20% and 10% respectively) were included
in feed compared with 0% inclusion, suggesting lower inclusion levels.

Shrimp growth improvement at low inclusion levels were found with other seaweed
meals, as for example with 2 or 4% of Macrocystis pyrifera (Cruz-Suárez et al., 2000)
or Sargassum sp. (Suárez-García, 2006) included in shrimp feed. Yu et al. (2016) also
recommends low inclusion levels (2 or 3%) of Gracilaria lemaneiformis meal in order to
improve weight gain in L. vannamei. The growth promotor effect, as in the present work,
is generally attributed to vitamins, minerals and lipids present in the seaweed (Cruz-suárez
et al., 2008; Tabarsa et al., 2012).

U. lactuca showed high content of ash (36.5%) similar to the value reported byRodríguez-
González et al. (2014) (41.7%), which could explain the limiting inclusion level of seaweed
meal in the feed. High inclusion levels of seaweed meal in feed reflects higher contents
of ash, which has been related with decrement of feed digestibility (Brunson, Romaire &
Reigh, 1997; Yang et al., 2009). In a study in black tiger shrimp Penaeus monodon, apparent
digestibility of U. lactuca meal was significantly lower (71%) than for protein concentrate
fromU. lactuca (99%) (Santizo, Serrano & Corre, 2014). This decrement of feed digestibility
on Ulva meal diets is not observed when fresh seaweed is used as food, like when shrimp
are fed fresh U. lactuca (Pallaoro, do Nascimento Vieira & Hayashi, 2016) or U. clathrata
(Cruz-Suárez et al., 2010), which, in both cases, could be save at around 50% of pelleted
feed without negative effects on shrimp growth.

The increase of 30% in whole shrimp lipid content of shrimps fed 3% U. lactuca
meal diet, respect to control feed, was also described in L. vannamei co-cultured with U.
clathrata, where a combination of pelleted feed and seaweed increased up to 50% total lipid
content in shrimp (Cruz-Suárez et al., 2010). This increase in shrimp lipid content could
be partially attributed to carotenoids content in the algae. Carotenoid in crustaceans are
responsible for pigmentation and as source of provitamin A and as antioxidants (Liñan
Cabello, Paniagua-Michel & Hopkins, 2002). Total carotenoids in the U. lactuca meal in
the present study was in the range described for the same species and others Ulvales (240
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to 500 ug g−1 fresh weight) (Xia, Li & Zou, 2004; Kumar et al., 2010; Peña Rodríguez et
al., 2011). Shrimp fed diets with U. lactuca meal significantly increased whole shrimp
carotenoid content, with the highest concentration in the head. Penaeid shrimp effectively
use carotenoids from Ulvales to increase body pigmentation. Shrimp fed fresh U. clathrata
increase carotenoid content as the use of pelleted food decreased (Cruz-Suárez et al., 2010).
In another study, feeds with 3.3% of seaweed (U. clathrata) meal inclusion diet resulted in
higher shrimp pigmentation after cooking respect toAscophilllum nodosum andMacrocystis
pyrifera diets (Cruz-Suárez et al., 2009). A diet containing 5% of Enteromorpha intestinalis
meal increased significantly the astaxanthin content in P. monodon muscle compared to a
control diet after 30 days of feeding trial (Subhra Bikash, 2015).

CONCLUSIONS
In conclusion, the results of the present study demonstrated that U. lactuca can be used on
integrated aquaculture systems in terms of nitrogen and phosphate water bioremediation,
and the inclusion of the seaweed biomass produced as feed additive improves shrimp
growth performance and shrimp carotenoid content.
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